Презентация на тему: ТЕОРИЯ ВЕРОЯТНОСТЕЙ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
1/22
Средняя оценка: 4.1/5 (всего оценок: 56)
Код скопирован в буфер обмена
Скачать (888 Кб)
1

Первый слайд презентации: ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Изображение слайда
2

Слайд 2

Однотипные задачи под номерами одного цвета. Чтобы увидеть решение задачи, кликните по тексту. Чтобы увидеть ответ к задаче, кликните по кнопке:

Изображение слайда
3

Слайд 3

• Справочный материал Классическое определение вероятности Вероятностью события А называется отношение числа благоприятных для него исходов испытания к числу всех равновозможных исходов. где m - число исходов, благоприятствующих осуществлению события, а n - число всех возможных исходов.

Изображение слайда
4

Слайд 4

Некоторые свойства и формулы Вероятность достоверного события равна единице. Вероятность невозможного события равна нулю. Сумма вероятностей противоположных событий равна 1. Формула сложения вероятностей совместных событий: P(A U B)   =P(A) + P(B) – P(A∩B) 5. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий. P(A U B)   =P(A) + P(B) 6. Вероятность произведения независимых событий А и В (наступают одновременно)вычисляется по формуле: P(A∩B) = P(A) ∙ P(B). 7. Формула умножения вероятностей: P(A∩B) = P(A) ∙ P(B/A), где P(B/A) – условная вероятность события В, при условии, что событие А наступило.

Изображение слайда
5

Слайд 5

8. Формула Бернулли – формула вероятности k успехов в серии из n испытаний где – число сочетаний, р – вероятность успеха, q = 1 – р – вероятность неудачи. При подбрасывании симметричной монеты, когда р = q = ½, формула Бернулли принимает вид: Например, вероятность выпадения орла дважды в трех испытаниях:

Изображение слайда
6

Слайд 6

Большинство задач можно решить с помощью классической формулы вероятности: Некоторые методы решения задач 2. Задачи с монетами ( и игральной костью) при небольшом количестве подбрасываний удобно решать методом перебора комбинаций. Метод перебора комбинаций : – выписываем все возможные комбинации орлов и решек. Например, ОО,ОР,РО, РР. Число таких комбинаций – n; – среди полученных комбинаций выделяем те, которые требуются по условию задачи (благоприятные исходы), – m ; – вероятность находим по формуле:

Изображение слайда
7

Слайд 7

3. При решении задач с монетами число всех возможных исходов можно посчитать по формуле Аналогично при бросании кубика 4. Комбинаторный метод решения можно применять при подсчете количества исходов с помощью формул комбинаторики.

Изображение слайда
8

Слайд 8

•Решение задач по формуле вероятности n = 4 – число всех элементарных исходов; m = 1 – число благоприятных исходов (жребий выпал на маму). Решение 1. Папа, мама, сын и дочка бросили жребий – кому мыть посуду. Найдите вероятность того, что посуду будет мыть мама. Ответ: 0,25 Ответ: 0,25

Изображение слайда
9

Слайд 9

2. Женя, Лена, Маша, Аня и Коля бросили жребий – кому идти в магазин. Найдите вероятность того, что в магазин надо будет идти Ане. n = 5 – число всех возможных исходов; Ответ: 0,2 Ответ: 0,2 m = 1 – число благоприятных исходов (в магазин идти Ане). Решение

Изображение слайда
10

Слайд 10

3. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится 8 сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Решение n = 100 + 8 = 108 – число всех возможных исходов (всего сумок); m = 1 00 – число благоприятных исходов (качественная сумка). Ответ: 0,93 Ответ: 0,93

Изображение слайда
11

Слайд 11

4. В среднем из 1000 садовых насосов, поступивших в продажу, 9 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение n = 1000 – число всех возможных исходов (всего насосов); m = 1 000 – 9 = 991 – число благоприятных исходов (насос не подтекает). Ответ: 0,991 Ответ: 0, 991

Изображение слайда
12

Слайд 12

5. В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Решение n = 55 – число всех возможных исходов; m = 1 1 – число благоприятных исходов (вопрос по ботанике). Ответ: 0,2 Ответ: 0,2

Изображение слайда
13

Слайд 13

6. На семинар приехали трое ученых из Норвегии, четверо из России и трое из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России. Решение n = 3+4+3=10 – число всех возможных исходов, (число всех претендентов на это, в данном случае восьмое, место); m = 4 – число благоприятных исходов (число претендентов из России). Ответ: 0,4 Ответ: 0,4

Изображение слайда
14

Слайд 14

7. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение n = 20 – число всех возможных исходов,(число всех претендентов на это место, причем это может быть1, 2, …, 8, последнее место); m = 20 – (8+7)=5 – число благоприятных исходов (число претендентов из Китая) Ответ: 0,25 Ответ: 0,25

Изображение слайда
15

Слайд 15

m = (80-8): 4 = 18 – число благоприятных исходов (порядковых номеров, приходящихся на второй, третий, четвертый и пятый дни). n = 80 – число всех возможных исходов (всех возможных порядковых номеров выступления представителя России); 8. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений  – по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Решение Ответ: 0,225 Ответ: 0,225

Изображение слайда
16

Слайд 16

9. В чемпионате мира участвуют 20 команд. С помощью жребия их нужно разделить на четыре группы по пять команд в каждой. В ящике вперемешку лежат карточки с номерами групп: 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4. Капитаны команд тянут по карточке. Какова вероятность того, что команда Великобритании окажется во второй группе? Решение n = 20 – число всех возможных исходов (всего карточек); m = 5 – число благоприятных исходов (число карточек с номером 2). Ответ: 0,25 Ответ: 0,25

Изображение слайда
17

Слайд 17

10. Перед началом первого тура чемпионата по Бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Решение n = 26 – 1 = 25 – число всех возможных исходов (число соперников); m = 10 – 1 = 9 – число благоприятных исходов (число соперников-россиян); Сам с собой он играть не будет! Ответ: 0,36 Ответ: 0,36

Изображение слайда
18

Слайд 18

1 1. Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 шахматистов, среди которых 4 участника из России, в том числе Александр Ефимов. Найдите вероятность того, что в первом туре Александр Ефимов будет играть с каким-либо шахматистом из России? Решение n = 76 – 1 = 75 – число всех возможных исходов (число соперников), m = 4 – 1 = 3 – число благоприятных исходов (число соперников-россиян) Ответ: 0,04 Ответ: 0,04

Изображение слайда
19

Слайд 19

1 2. Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 46 теннисистов, среди которых 19 участников из России, в том числе Ярослав Исаков. Найдите вероятность того, что в первом туре Ярослав Исаков будет играть с каким-либо теннисистом из России? n = 46 – 1 = 45 – число всех возможных исходов (равно числу соперников) m = 19 – 1 = 18 – число благоприятных исходов (при которых соперником будет россиянин) Решение Ответ: 0,4 Ответ: 0,4

Изображение слайда
20

Слайд 20

0,2 1. Папа, мама, сын и дочка бросили жребий – кому мыть посуду. Найдите вероятность того, что посуду будет мыть мама. Задачи, решаемые с помощью формулы вероятности 2. Женя, Лена, Маша, Аня и Коля бросили жребий – кому идти в магазин. Найдите вероятность того, что в магазин надо будет идти Ане. 3. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится 8 сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. 4. В среднем из 1000 садовых насосов, поступивших в продажу, 9 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. 5. В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Ответы 0,25 0,93 0,2 0,991

Изображение слайда
21

Слайд 21

8. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений - по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? 7. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные - из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. 6. На семинар приехали 3 ученых из Норвегии, 4 из России и 3 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России. 0,4 0,25 0,225 9. В чемпионате мира участвуют 20 команд. С помощью жребия их нужно разделить на четыре группы по пять команд в каждой. В ящике вперемешку лежат карточки с номерами групп: 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4. Капитаны команд тянут по карточке. Какова вероятность того, что команда Великобритании окажется во второй группе? 0,25

Изображение слайда
22

Последний слайд презентации: ТЕОРИЯ ВЕРОЯТНОСТЕЙ

0,36 1 1. Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 шахматистов, среди которых 4 участника из России, в том числе Александр Ефимов. Найдите вероятность того, что в первом туре Александр Ефимов будет играть с каким-либо шахматистом из России? 1 2. Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 46 теннисистов, среди которых 19 участников из России, в том числе Ярослав Исаков. Найдите вероятность того, что в первом туре Ярослав Исаков будет играть с каким-либо теннисистом из России? 0,04 0,4 10. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?

Изображение слайда