Презентация на тему: ТЕМА "ПРИМЕНЕНИЕ ПОЛЯРНЫХ КООРДИНАТ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ МАТЕРИАЛЬНОЙ

Реклама. Продолжение ниже
ТЕМА "ПРИМЕНЕНИЕ ПОЛЯРНЫХ КООРДИНАТ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ"
СОДЕРЖАНИЕ
ЦЕЛИ:   изучение полярной системы координат и приобритение навыка нахождения положения точки с помощью полярных координат. ЗАДАЧИ:  изучить полярную систему
ВВЕДЕНИЕ
1. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ
2. УРАВНЕНИЕ КРИВЫХ В ПОЛЯРНЫХ КООРДИНАТАХ
3. КОМПЛЕКСНЫЕ ЧИСЛА
4. МАТЕМАТИЧЕСКИЙ АНАЛИЗ
5. ТРЁХМЕРНОЕ РАСШИРЕНИЕ
6. ПРИМЕНЕНИЕ
ЗАКЛЮЧЕНИЕ
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ
1/12
Средняя оценка: 4.2/5 (всего оценок: 8)
Код скопирован в буфер обмена
Скачать (834 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации: ТЕМА "ПРИМЕНЕНИЕ ПОЛЯРНЫХ КООРДИНАТ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ"

Выполнила студентка группы а11 кузуб анна Преподаватель Тавгер ефим хаймович ПРОЕКТНАЯ РАБОТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАЛТИЙСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИММАНУИЛА КАНТА» (БФУ ИМ. И. КАНТА) ИНСТИТУТ ПРИРОДОПОЛЬЗОВАНИЯ, ТЕРРИТОРИАЛЬНОГО РАЗВИТИЯ И ГРАДОСТРОИТЕЛЬСТВА СПЕЦИАЛЬНОСТЬ 07.03.02 АРХИТЕКТУРА

Изображение слайда
1/1
2

Слайд 2: СОДЕРЖАНИЕ

2 ЦЕЛИ, ЗАДАЧИ, АКТУАЛЬНОСТЬ ВВЕДЕНИЕ ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ УРАВНЕНИЕ КРИВЫХ В ПОЛЯРНЫХ КООРДИНАТАХ КОМПЛЕКСНЫЕ ЧИСЛА МАТЕМАТИЧЕСКИЙ АНАЛИЗ ТРЁХМЕРНОЕ РАСШИРЕНИЕ ПРИМЕНЕНИЕ ЗАКЛЮЧЕНИЕ ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

Изображение слайда
1/1
3

Слайд 3: ЦЕЛИ:   изучение полярной системы координат и приобритение навыка нахождения положения точки с помощью полярных координат. ЗАДАЧИ:  изучить полярную систему координат,  охарактеризовать процесс нахождения материальной точки с помощью полярных координат. АКТУАЛЬНОСТЬ:   данная тема актуальна, так как не изучается в школьной программе, несмотря на то, что не все графики удобно строить в декартовой системе

3

Изображение слайда
1/1
4

Слайд 4: ВВЕДЕНИЕ

4 Полярная система координат - двухмерная система координат, в которой каждая точка на плоскости определяется двумя числами - полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.

Изображение слайда
1/1
5

Слайд 5: 1. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ

5 Каждая точка в полярной системе координат может быть определена двумя полярными координатами, что обычно называются r (радиальная координата, встречается вариант обозначения р ) и φ (угловая координата, полярный угол, фазовый угол, азимут, позиционный угол, иногда пишут О или t ). Координата r соответствует расстоянию от точки до центра, или полюса системы координат, а координата φ равна углу, отсчитываемого в направлении против часовой стрелки от луча через 0° (иногда называемому полярной осью системы координат).

Изображение слайда
Изображение для работы со слайдом
1/2
6

Слайд 6: 2. УРАВНЕНИЕ КРИВЫХ В ПОЛЯРНЫХ КООРДИНАТАХ

6 Благодаря радиальной природе полярной системы координат, некоторые кривые могут быть достаточно просто описаны полярным уравнением, тогда как уравнение в прямоугольной системе координат было бы намного сложнее. Среди самых известных кривых: полярная роза, архимедова спираль, Лемниската, улитка Паскаля и кардиоида.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
7

Слайд 7: 3. КОМПЛЕКСНЫЕ ЧИСЛА

7 Каждое комплексное число может быть представлено точкой на комплексной плоскости, и, соответственно, эта точка может определяться в декартовых координатах (прямоугольная или декартова форма), либо в полярных координатах (полярная форма). Комплексное число z может быть записано в прямоугольной форме так: z=x+iy, где i - мнимая единица, или в полярной: z=rcdot (cos φ +isin φ) и отсюда: z=re iφ, где e - число Эйлера

Изображение слайда
Изображение для работы со слайдом
1/2
Реклама. Продолжение ниже
8

Слайд 8: 4. МАТЕМАТИЧЕСКИЙ АНАЛИЗ

8 Используя полярные координаты, также можно сформулировать следующие операции математического анализа: Дифференциальное исчисление Интегральное исчисление Векторный анализ

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
9

Слайд 9: 5. ТРЁХМЕРНОЕ РАСШИРЕНИЕ

9 Полярная система координат распространяется в третье измерение двумя системами: цилиндрической и сферической, обе содержат двумерную полярную систему координат как подмножество. По сути, цилиндрическая система расширяет полярную добавлением ещё одной координаты расстояния, а сферическая - ещё одной угловой координаты.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
10

Слайд 10: 6. ПРИМЕНЕНИЕ

10 В позиционировании и навигации: полярную систему координат часто применяют в навигации, поскольку пункт назначения можно задать как расстояние и направление движения от отправной точки. В физике:  существенное удобство полярные координаты предоставляют при работе с системами, имеющими точечные (или приближенно точечные) источники энергии В прикладных целях: в разных прикладных областях, полярные координаты применяются как способами, близкими к применяемым в соответствующих областям фундаментальной физики, так и самостоятельным образом. В диаграммах направленности:  полярные диаграммы могут использоваться для представления практически любых зависимостей.

Изображение слайда
1/1
11

Слайд 11: ЗАКЛЮЧЕНИЕ

11 Полярная система координат двумерная и поэтому может применяться только в тех случаях, когда местонахождение точки определяется на плоскости, или для случая однородности свойств системы в третьем измерении, например, при рассмотрении течения в круглой трубе. Лучшим контекстом применения полярных координат являются случаи, тесно связанные с направлением и расстоянием от некоторого центра. Кроме того, многие физических системы - такие, которые содержат тела, движущиеся вокруг центра, либо явления, распространяющиеся из некоторого центра - гораздо проще моделировать в полярных координатах.

Изображение слайда
1/1
12

Последний слайд презентации: ТЕМА "ПРИМЕНЕНИЕ ПОЛЯРНЫХ КООРДИНАТ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ МАТЕРИАЛЬНОЙ: ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

12 1. G., Brown Richard. Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis. Evanston, Illinois : McDougal Littell, 1997. 2. Lee, Theodore и David Cohen, David Sklar. Precalculus: With Unit-Circle Trigonometry, Fourth Edition. б.м. : Thomson Brooks/Cole, 2005. 3. Stewart, Ian и Tall, David. Complex Analysis (the Hitchhiker's Guide to the Plane). б.м. : Cambridge University Press, 1983. 4. Serway, Raymond A. и Jewett, Jr., John W. Principles of Physics. б.м. : Brooks/Cole—Thomson Learning, 2005. 5. Torrence, Bruce Follett и Torrence, Eve. The Student's Introduction to Mathematica. б.м. : Cambridge University Press, 1999. 6. Smith, Julius O. Mathematics of the Discrete Fourier Transform (DFT). б.м. : W3K Publishing, 2003. 7. Гельфанд И. М., Глаголева Е. Г., Кириллов А. А. Метод координат. 1973.

Изображение слайда
1/1
Реклама. Продолжение ниже