Презентация на тему: СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
1/22
Средняя оценка: 4.4/5 (всего оценок: 38)
Код скопирован в буфер обмена
Скачать (2484 Кб)
1

Первый слайд презентации

СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Изображение слайда
2

Слайд 2

Ключевые слова система счисления цифра алфавит позиционная система счисления основание развёрнутая форма записи числа свёрнутая форма записи числа двоичная система счисления восьмеричная система счисления шестнадцатеричная система счисления

Изображение слайда
3

Слайд 3

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при помощи которых записываются числа. Алфавит системы счисления - совокупность цифр. Общие сведения Древнеславянская система счисления Вавилонская система счисления Египетская система счисления

Изображение слайда
4

Слайд 4

Узловые числа обозначаются цифрами. Узловые и алгоритмические числа Алгоритмические числа получаются в результате каких-либо операций из узловых чисел.  100 +  10 + =

Изображение слайда
5

Слайд 5

Простейшая и самая древняя система - унарная система счисления. В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек. Унарная система счисления Узелковое письмо «кипу» Зарубки Примеры узлов «кипу» Узелки, дощечки Камушки

Изображение слайда
6

Слайд 6

Римская система счисления 1 I 100 C 5 V 500 D 10 X 1000 M 50 L 40 = X L 1935 M C M X X X 28 X X V I I I V Непозиционная система счисления Система счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Изображение слайда
7

Слайд 7

Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит. Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Позиционная система счисления

Изображение слайда
8

Слайд 8

Цифры 1234567890 сложились в Индии около 400 г. н. э. Арабы стали пользоваться подобной нумерацией около 800 г. н. э. Примерно в 1200 г. н. э. эту нумерацию начали применять в Европе. Десятичная система счисления

Изображение слайда
9

Слайд 9

В позиционной системе счисления с основанием q любое число может быть представлено в виде: A q =±(a n–1  q n–1 + a n–2  q n–2 +…+ a 0  q 0 + a –1  q –1 +…+ a –m  q –m ) Здесь: А — число; q — основание системы счисления; a i — цифры, принадлежащие алфавиту данной системы счисления; n — количество целых разрядов числа; m — количество дробных разрядов числа; q i — «вес» i -го разряда. Такая запись числа называется развёрнутой формой записи. Основная формула

Изображение слайда
10

Слайд 10

A q =±(a n–1  q n–1 + a n–2  q n–2 +…+ a 0  q 0 + a –1  q –1 +…+ a –m  q –m ) Примеры записи чисел в развёрнутой форме: 2012=2  10 3 +0  10 2 +1  10 1 +2  10 0 0,125=1  10 -1 +2  10 -2 +5  10 –3 14351,1=1  10 4 +4  10 3 +3  10 2 +5  10 1 +1  10 0 +1  10 –1 Развёрнутая форма

Изображение слайда
11

Слайд 11

Двоичная система счисления Двоичной системой счисления называется позиционная система счисления с основанием 2. Двоичный алфавит : 0 и 1. Для целых двоичных чисел можно записать: a n–1 a n–2 …a 1 a 0 = a n–1  2 n–1 + a n–2  2 n–2 +…+ a 0  2 0 Например: 10011 2 =1  2 4 +0  2 3 +0  2 2 +1  2 1 +1  2 0 = 2 4 +2 1 + 2 0 =19 10 Правило перевода двоичных чисел в десятичную систему счисления: Вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа

Изображение слайда
12

Слайд 12

Правило перевода целых десятичных чисел в двоичную систему счисления a n–1  2 n–1 +a n–2  2 n–2 +… a 1  2 1 +a 0 = a n–1  2 n–2 +…+ a 1 (остаток a 0 ) 2 a n–1  2 n–1 +a n–2  2 n–2 +… a 1 = a n–1  2 n–3 +…+ a 2 (остаток a 1 ) 2 ... a n–1  2 n–1 +a n–2  2 n–2 +… a 2 = a n–1  2 n–4 +…+ a 3 (остаток a 2 ) 2 На n -м шаге получим набор цифр: a 0 a 1 a 2 …a n–1

Изображение слайда
13

Слайд 13

363 181 90 45 22 11 5 2 1 1 1 0 1 0 1 1 0 1 363 10 = 101101011 2 314 157 78 39 19 9 4 2 1 0 1 0 1 1 1 0 0 1 314 10 = 100111010 2 Компактное оформление

Изображение слайда
14

Слайд 14

a n–1 a n–2 …a 1 a 0 = a n–1  8 n–1 +a n–2  8 n–2 +…+a 0  8 0 Пример : 1063 8 =1  8 3 +0  8 2 +6  8 1 +3  8 0 =563 10. Для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения. Восьмеричная система счисления Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Восьмеричной системой счисления называется позиционная система счисления с основанием 8. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7.

Изображение слайда
15

Слайд 15

Основание : q = 16. Алфавит : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Шестнадцатеричная система счисления Переведём десятичное число 154 в шестнадцатеричную систему счисления: 154 10 = 9А 16 154 16 9 -144 10 (А) 9 16 0 3АF 16 =3  16 2 +10  16 1 +15  16 0 =768+160+15=943 10.

Изображение слайда
16

Слайд 16

1) последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, равное нулю; 2) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления; 3) составить число в новой системе счисления, записывая его, начиная с последнего полученного остатка. Цифровые весы Правило перевода целых десятичных чисел в систему счисления с основанием q

Изображение слайда
17

Слайд 17

Таблица соответствия 10-х, 2-х, 8-х и 16-х чисел от 1 до 16 Десятичная система Двоичная система Восьмеричная система Шестнадцатеричная система 1 1 1 1 2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F 16 10000 20 10 17 10001 21 11 18 10010 22 12

Изображение слайда
18

Слайд 18

Двоичная арифметика Арифметика двоичной системы счисления основывается на использовании следующих таблиц сложения и умножения: + 0 1 0 0 1 1 1 10  0 1 0 0 0 1 0 1 Арифметика одноразрядных двоичных чисел Арифметика многоразрядных двоичных чисел Умножение и деление двоичных чисел

Изображение слайда
19

Слайд 19

«Компьютерные» системы счисления Двоичная система используется в компьютерной технике, так как: двоичные числа представляются в компьютере с помощью простых технических элементов с двумя устойчивыми состояниями; представление информации посредством только двух состояний надёжно и помехоустойчиво; двоичная арифметика наиболее проста; существует математический аппарат, обеспечивающий логические преобразования двоичных данных. Двоичный код удобен для компьютера. Человеку неудобно пользоваться длинными и однородными кодами. Специалисты заменяют двоичные коды на величины в восьмеричной или шестнадцатеричной системах счисления.

Изображение слайда
20

Слайд 20

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа. В позиционной системе счисления с основанием q любое число может быть представлено в виде: A q =±(a n–1  q n–1 + a n–2  q n–2 +…+ a 0  q 0 + a –1  q –1 +…+ a –m  q –m ) Здесь: А — число; q — основание системы счисления; a i — цифры, принадлежащие алфавиту данной системы счисления; n — количество целых разрядов числа; m — количество дробных разрядов числа; q i — «вес» i -го разряда. Самое главное

Изображение слайда
21

Слайд 21

Опорный конспект Непозиционная В позиционной системе счисления с основанием q любое число может быть представлено в виде: A q =±(a n–1  q n–1 + a n–2  q n–2 +…+ a 0  q 0 + a –1  q –1 +…+ a –m  q –m ). Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при помощи которых записываются числа. Алфавит - совокупность цифр системы счисления. Система счисления Двоичная Десятичная Восьмеричная Шестнадцатеричная Римская Позиционная

Изображение слайда
22

Последний слайд презентации: СИСТЕМЫ СЧИСЛЕНИЯ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Электронные образовательные ресурсы http://school-collection.edu.ru/catalog/res/caeea6cc-bd1d-4f47-9046-1434ac57e111/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Умножение и деление двоичных чисел http://school-collection.edu.ru/catalog/res/402b749c-240b-4e16-9e4d-bea3fc4fa8fa/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – История развития систем счисления http://school-collection.edu.ru/catalog/res/1a264912-eca9-4b45-8d77-c3655b199113/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Перевод недесятичных чисел в десятичную систему счисления http://school-collection.edu.ru/catalog/res/78ba290c-0f7c-4067-aaf4-d72f40f49f3b/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Перевод десятичных чисел в другие системы счисления http://school-collection.edu.ru/catalog/res/67cbf74b-f85a-4e9d-88c5-58f203fb90ce/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Сложение и вычитание многоразрядных двоичных чисел http://school-collection.edu.ru/catalog/res/8bb7eefa-4ed9-43fe-aebe-4d6ac67bc6ec/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Сложение и вычитание одноразрядных двоичных чисел http://school-collection.edu.ru/catalog/res/fc77f535-0c00-4871-b67c-fa2ecf567d46/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Задачник http://school-collection.edu.ru/catalog/res/a96df437-5ae3-4cab-8c5f-8d4cd78c5775/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Развернутая форма записи числа http://school-collection.edu.ru/catalog/res/19d0fb95-871d-4063-961d-e7dc5725e555/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Тренировочный тест

Изображение слайда