Презентация на тему: Применение ядерной энергии в различных отраслях. Доза радиоактивного излучения

Реклама. Продолжение ниже
Применение ядерной энергии в различных отраслях. Доза радиоактивного излучения
Введение.
Применение ядерной энергии
Использование ядерной энергии в военной сфере
Первые Атомные электростанции
Атомные электростанции
Атомные ледоколы, подводные лодки, авианосцы
Атомная энергия для полетов в космос
Сельское хозяйство
Ядерная медицина
Ядерное оружие
Доза радиоактивного излучения
Доза радиоактивного излучения
1/13
Средняя оценка: 4.6/5 (всего оценок: 97)
Код скопирован в буфер обмена
Скачать (9772 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации: Применение ядерной энергии в различных отраслях. Доза радиоактивного излучения

Выполнила: Костромина Полина Олеговна Группа: П-191

Изображение слайда
1/1
2

Слайд 2: Введение

Использование атомной энергии является атрибутом современной цивилизации, показателем эволюции человеческой культуры и важной сферой международных отношений. В этом нет никаких сомнений? его влияние на качество жизни человечества в целом и его основных составляющих, таких как военно-политическая, экономическая, энергетическая, научно-техническая, экологическая, здравоохранение, образование, социальная стабильность и др.

Изображение слайда
Изображение для работы со слайдом
1/2
3

Слайд 3: Применение ядерной энергии

Ядерная энергия применяется для различных целей: В мирных целях ядерная энергия используется на атомных электрических станциях, для основы двигателя атомного ледокола, атомных подводных лодок, атомных авианосцев. Также применение ядерная энергия находит в термоэлектрических генераторах, в долгоживущих источниках тепла и бетагальванических элементах. Большое влияние ядерная энергия оказывает на сферы медицины и с/х. В военных целях ядерная энергия используется для создания оружия: атомных бомб, ядерных ракет, снарядов и мин.

Изображение слайда
1/1
4

Слайд 4: Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония. Ядерное оружие относят к оружию массового поражения, потому что оно производит разрушения на огромных территориях. По радиусу действия и мощности заряда ядерное оружие делится на: Тактическое. Оперативно-тактическое. Стратегическое. Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции термоядерного синтеза. Для цепной реакции используют уран либо плутоний. Хранение такого большого количества опасных материалов – это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям. Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Изображение слайда
Изображение для работы со слайдом
1/2
5

Слайд 5: Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать Обнинская АЭС. Обнинская АЭС В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт. Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям. В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969. В 1973 г. запущена Ленинградская АЭС. В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер -Холле (Великобритания) ее мощность составляла 46 МВт. В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
6

Слайд 6: Атомные электростанции

Попытки использовать управляемую ядерную реакцию для производства электричества начались в 1940-х годах в нескольких странах. В СССР во второй половине 40-х гг., ещё до окончания работ по созданию первой советской атомной бомбы (её испытание состоялось 29 августа 1949 года), советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого стала электроэнергетика. В 1948 году по предложению И. В. Курчатова и в соответствии с заданием ВКП(б) и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии Атомная электростанция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом). Первая в мире АЭС была создана в Советском Союзе в рамках программы развития мирного атома, инициированной в 1948 году по инициативе академика И.В. Курчатова На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. В настоящее время АЭС использует 31 страна. Их большинство находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще.

Изображение слайда
1/1
7

Слайд 7: Атомные ледоколы, подводные лодки, авианосцы

Ядерная силовая установка — силовая установка, работающая на энергии цепной реакции деления ядра. Состоит из ядерного реактора и паро- или газотурбинной установки, в которой тепловая энергия, выделяющаяся в реакторе, преобразуется в механическую или электрическую энергию. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы). Атомный ледокол — морское судно-атомоход с ядерной силовой установкой, построенное специально для использования в водах, круглогодично покрытых льдом. Атомные ледоколы намного мощнее дизельных. В СССР они были разработаны для обеспечения судоходства в холодных водах Арктики. Одно из главных преимуществ атомного ледокола — отсутствие необходимости в регулярной дозаправке топливом, которое необходимо в плавании во льдах, когда такой возможности нет или дозаправка сильно затруднена. Атомная подводная лодка (АПЛ, ПЛА) — подводная лодка с ядерной силовой установкой. Авианосец — класс боевых кораблей, приспособленный для обслуживания и базирования авиационных групп в качестве мобильной авиабазы, действующей в открытом море. Основной ударной силой авианосца является базируемая на корабле палубная авиация, которая может иметь в своём составе и самолёты-носители ядерного оружия.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
1/4
Реклама. Продолжение ниже
8

Слайд 8: Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии. Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня. В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с плазменными двигателями. Но после всех испытаний он так и не был запущен в космос. Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур. Сегодня « Роскосмос » и « Росатом » предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
9

Слайд 9: Сельское хозяйство

Семена растений подвергаются облучению небольшими дозами лучей от радиоактивных препаратов. Это приводит к заметному увеличению у урожайности и времени хранения. Гамма-лучи применимы для борьбы с насекомыми. Также экспериментируя с увеличением дозы радиации, в следствии мутации, появляются новые сорта растений и микроорганизмов, имеющие ценный свойства

Изображение слайда
Изображение для работы со слайдом
1/2
10

Слайд 10: Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента. Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Изображение слайда
Изображение для работы со слайдом
1/2
11

Слайд 11: Ядерное оружие

Ядерные боеприпасы бывают следующие: авиационные бомбы; боевые блоки тактических, оперативной тактических, баллистических и крылатых ракет различной дальности; глубинные бомбы, якорные и донные мины; артиллерийские снаряды; торпеды (боевые части морских торпед); инженерные мины, фугасы) Ядерный снаряд — боеприпас для нанесения тактического ядерного удара по крупным целям и скоплениям сил противника Ядерная мина — ядерный боеприпас для устройства ядерно-минных заграждений.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
12

Слайд 12: Доза радиоактивного излучения

Доза излучения (поглощенная доза) – энергия радиоактивного излучения, поглощенная в единице облучаемого вещества или человеком. С увеличением времени облучения доза растет. При одинаковых условиях облучения она зависит от состава вещества. Поглощенная доза нарушает физиологические процессы в организме и приводит в ряде случаев к ОЛБ различной степени тяжести. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица – грей (Гр). 1 грей – это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг. Поглощенная доза излучения является физической величиной, определяющей степень радиационного воздействия. Мощность дозы (мощность поглощенной дозы) – приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе Си – грей в секунду. Эта такая мощность поглощенной дозы излучения, при которой за 1 секунду в веществе создается доза излучения в 1 Гр. На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы – рад в час (рад/ч) или рад в секунду (рад/с). 1 Гр = 100 рад.

Изображение слайда
1/1
13

Последний слайд презентации: Применение ядерной энергии в различных отраслях. Доза радиоактивного излучения: Доза радиоактивного излучения

Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле Дэкв = Q • Д, где Д – поглощенная доза данного вида излучения, Q – коэффициент качества излучения, который для различных видов ионизирующих излучений с неизвестным спектральным составом принят для рентгеновского и гамма-излучения - 1, для бета-излучения - 1, для нейтронов с энергией от 0,1 до 10 МэВ - 10, для альфа-излучений с энергией менее 10 МэВ - 20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают, соответственно, в 10 и 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в зивертах (Зв). Зиверт равен одному грею, деленному на коэффициент качества. При Q = 1 получаем 1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр. Бэр (биологический эквивалент рентгена) – это внесистемная единица эквивалентной дозы, такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения

Изображение слайда
Изображение для работы со слайдом
1/2
Реклама. Продолжение ниже