Презентация на тему: Презентация по физике на тему : « Методы наблюдения и регистрации элементарных

Презентация по физике на тему : « Методы наблюдения и регистрации элементарных частиц».
Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии
Счетчик Гейгера — один из важнейших приборов для автоматического подсчета частиц.
В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор
Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по
В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах
Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующее действие быстрых заряженных
Современные приборы для обнаружения редко встречающихся и короткоживущих частиц очень сложны. В их создании принимают участие сотни людей.
1/8
Средняя оценка: 4.8/5 (всего оценок: 92)
Код скопирован в буфер обмена
Скачать (10928 Кб)
1

Первый слайд презентации: Презентация по физике на тему : « Методы наблюдения и регистрации элементарных частиц»

Выполнила: Лифанова Алена Группа: П-191

Изображение слайда
2

Слайд 2: Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, — выстрел

Регистрирующий прибор — это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц. В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Изображение слайда
3

Слайд 3: Счетчик Гейгера — один из важнейших приборов для автоматического подсчета частиц

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, α-частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство. Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается. Счетчик Гейгера применяется в основном для регистрации электронов и γ-квантов (фотонов большой энергии ). В настоящее время созданы счетчики, работающие на иных принципах.

Изображение слайда
4

Слайд 4: В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это — неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы — трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Изображение слайда
5

Слайд 5: Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека — ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины

Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле. Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Изображение слайда
6

Слайд 6: В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 13.4). В качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика — около 0,1 с. Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции. Треки в камере Вильсона и пузырьковой камере — один из главных источников информации о поведении и свойствах частиц. Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

Изображение слайда
7

Слайд 7: Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Бекке - релю открыть в 1896 г. радиоактивность. Метод фотоэмульсии был развит советскими физиками Л. В. Мысовским, Г. Б. Ждановым и др

Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы (рис. 13.5). По длине и толщине трека можно оценить энергию и массу частицы. Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка 10-3 см для α-частиц, испускаемых радиоактивными элементами), но при фотографировании их можно увеличить. Преимущество фотоэмульсий в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

Изображение слайда
8

Последний слайд презентации: Презентация по физике на тему : « Методы наблюдения и регистрации элементарных: Современные приборы для обнаружения редко встречающихся и короткоживущих частиц очень сложны. В их создании принимают участие сотни людей

Спасибо за внимание!!

Изображение слайда