Презентация на тему: Основы биохимии. Лекция №2

Основы биохимии. Лекция №2
Аминокислоты, пептиды, белки
Образование биомолекул
Строение белков
Белки и пептиды
ПРОТЕОМ – полный набор белков, который данный организм может синтезировать
Структура аминокислот
Структура аминокислот
Стандартные аминокислоты (20 а.к.)
Стандартные аминокислоты (20 а.к.)
Стандартные аминокислоты (20 а.к.)
Стандартные аминокислоты (20 а.к.)
Стандартные аминокислоты (20 а.к.)
Нестандартные аминокислоты
Открытие аминокислот в составе белков
Классификация аминокислот
Физические свойства аминокислот
Кислотно-основные свойства аминокислот
Оптические свойства а.к.
Оптические свойства а.к.
Особенности Cys
Пептидная связь
Строение тетрапептида из 4-х а.к.
Образование пептидной связи
Строение пептидной связи
цис - транс -Изомерия пептидной группы
Строение пептидной связи
Конфигурации и конформации молекул
Вращение валентных связей в полипептидной цепи
Конформационная карта Рамачандрана
Конформационные карты Рамачандрана
Конформационные карты Рамачандрана
Биологическая роль пептидов
Биологическая роль пептидов
Гормоны пептидно-белковой природы
Основы биохимии. Лекция №2
Антибиотики белково-пептидной природы
Токсины пептидно-белковой природы
Пептидные токсины бледной поганки
Пептиды со вкусовыми качествами
Уровни структурной организации белка
Функции белков
Первичная структура белка
Вторичная структура белка
Вторичная структура белка - α -спираль
Вторичная структура белка - α -спираль
Вторичная структура белка - β -складчатая структура
Вторичная структура белка - β -складчатая структура
Сверхвторичная структура белка
Третичная структура белка
Третичная структура белка
Четвертичная структура белка
Стадии образования нативной конформации белка ( Folding белков )
Folding белков. Белки - шапероны
Проблема правильного сворачивания белка. Прионы
История открытия прионных болезней
История открытия прионных болезней
Открытие прионов
Устойчивость прионов к различным воздействиям
Неправильное сворачивание белка-приона –причина болезней
Прионные болезни человека и животных
Основы биохимии. Лекция №2
Возможные способы для предотвращения неправильного сворачивания белка и его агрегации
Глобулярные и фибриллярные белки
Глобулярные и фибриллярные белки
Денатурация и ренатурация белка
Как определить структуру белка
Функции белков
Белки-Ферменты
Белки-Ферменты
Активный центр ферментов
Транспортные белки
Гемоглобин
Гемоглобин и миоглобин
Гемоглобин
Защитные белки
Пищевые и запасные белки
Белки-гормоны
Рецепторные белки
Регуляторные белки и пептиды
Структурные белки
Структурные белки
Структурные белки
Структурные белки
Структурные белки
Двигательные белки
Антибиотики белково-пептидной природы
Токсины пептидно-белковой природы
Пептиды со вкусовыми качествами
Основы биохимии. Лекция №2
1/90
Средняя оценка: 4.2/5 (всего оценок: 33)
Код скопирован в буфер обмена
Скачать (13130 Кб)
1

Первый слайд презентации: Основы биохимии. Лекция №2

Аминокислоты. Пептиды. Белки.

Изображение слайда
2

Слайд 2: Аминокислоты, пептиды, белки

Белки – природные высокомолекулярные полимеры, состоящие из остатков α -аминокарбоновых кислот, связанных амидной (пептидной) связью. Характерны неразветвленные пептидные связи Высокая молекулярная масса (кол-во аминокислотных остатков в белках 50 – 1000 ) Число аминокислот = n Возможное число пептидов = n! 2 2 4 24 10 3 628 800 20 2 · 10 ¹ 8 Всего в природе насчитывается несколько млрд различных белков

Изображение слайда
3

Слайд 3: Образование биомолекул

МОНОМЕРЫ ПОЛИМЕРЫ Аминокислота Полипептид Моносахарид Нуклеотид Полисахарид Нуклеиновая кислота

Изображение слайда
4

Слайд 4: Строение белков

N- конец C -конец Пептидная связь

Изображение слайда
5

Слайд 5: Белки и пептиды

Изображение слайда
6

Слайд 6: ПРОТЕОМ – полный набор белков, который данный организм может синтезировать

6 ПРОТЕОМ – полный набор белков, который данный организм может синтезировать Функция белков Доля от суммы белков протеома Метаболизм 17% Энергетика клетки 3% Репликация, рост и деление клетки 14% Транскрипция 10% Трансляция 5% Структурные белки и др. 49% Внутриклеточный транспорт 2%

Изображение слайда
7

Слайд 7: Структура аминокислот

α - аминокарбоновые кислоты R - заместители различной природы 20 стандартных аминокислот

Изображение слайда
8

Слайд 8: Структура аминокислот

Изображение слайда
9

Слайд 9: Стандартные аминокислоты (20 а.к.)

Глицин (Gly) Аланин (Ala) Пролин (Pro) Валин (Val) Метионин (Met) Изолейцин (Ile) Лейцин (Leu) Неполярные алифатические R группы

Изображение слайда
10

Слайд 10: Стандартные аминокислоты (20 а.к.)

Серин (Ser) Треонин (Thr) Цистеин (Cys) Глутамин (Gln) Аспарагин (Asn) Полярные незаряженные R группы

Изображение слайда
11

Слайд 11: Стандартные аминокислоты (20 а.к.)

Фенилаланин (Phe) Тирозин (Tyr) Триптофан (Trp) Ароматические R группы

Изображение слайда
12

Слайд 12: Стандартные аминокислоты (20 а.к.)

Лизин (Lys) Аргинин (Arg) Гистидин (His) Положительно заряженные R группы

Изображение слайда
13

Слайд 13: Стандартные аминокислоты (20 а.к.)

Аспартат (Asp) Глутамат (Glu) Отрицательно заряженные R группы

Изображение слайда
14

Слайд 14: Нестандартные аминокислоты

4-Гидроксипролин 5-Гидроксилизин 6- N -Метиллизин γ -Карбоксиглутамат Десмозин Селеноцистеин

Изображение слайда
15

Слайд 15: Открытие аминокислот в составе белков

Аминокислота Год Источник Кто впервые выделил Глицин 1820 Желатина А. Браконно Лейцин 1820 Мышечные волокна А. Браконно Тирозин 1848 Казеин Ф. Бопп Серии 1865 Шелк Э. Крамер Глутаминовая к-та 1866 Растительные белки Г. Риттхаузен Аспарагиновая к-та 1868 Ростки спаржи Г. Риттхаузен Фенилаланин 1881 Ростки люпина Э. Шульце, И, Барбьери Аланин 1888 Фиброин шелка Т. Вейль Лизин 1859 Казеин Э. Дрексель Аргинин 1895 Вещество рога С. Гедин Гистидин 1896 Гистоны А. Кессель Цистин 1899 Вещество рога К. Мёрнер Валин 1901 Казеин Э. Фишер Пролин 1901 Казеин Э. Фишер Гидроксипролин 1902 Желатина Э. Фишер Триптофань 1902 Казеин Ф.Гопкинс, Д, Кол Изолейцин 1904 Фибрин Ф.Эрлих Метионин 1922 Казеин Д. Мёллер Треонин 1925 Белки овса С. Шрайвер и др. Гидроксилизин 1925 Белки рыб С. Шрайвер и др.

Изображение слайда
16

Слайд 16: Классификация аминокислот

По химической структуре По отношению к воде (гидрофильные и гидрофобные) По кислотно-основным свойствам : Кислые а.к. Asp, Glu (2 ) Основные а.к. Lys, Arg, His (3 ) Нейтральные а.к. (15) 4. По пищевой ценности : Заменимые а.к. (10) (синтезируются в организме) Незаменимые а.к. (10) (должны поступать извне) Val, Leu, Ile, Thr, Met, Phe, Trp, Lys, Arg, His

Изображение слайда
17

Слайд 17: Физические свойства аминокислот

Белые кристаллические вещества Имеют высокие и нехарактерные Тпл., разлагаются при Т > 200 ° С Растворимы в воде, растворах кислот и щелочей Не растворяются в неполярных растворителях Обладают либо сладким, либо горьким вкусом

Изображение слайда
18

Слайд 18: Кислотно-основные свойства аминокислот

Нейтральная форма Цвиттерионная форма Проявляют амфотерные свойства В водных растворах при рН 7 полностью диссоциированы - существуют в виде биполярных ионов (цвиттер-ионов) Ионизация а.к. зависит от рН раствора – для каждой а.к. имеется значение рН i ( изоэлектрическая точка), при котором а.к. нейтральна : Нейтральные а.к. рН i = 5,0 - 6,3 Кислые а.к. рН i = 2,8 - 3,2 Основные а.к. рН i = 7,6 - 10,8

Изображение слайда
19

Слайд 19: Оптические свойства а.к

L -Глицеральдегид L -Аланин D -Глицеральдегид D -Аланин Все стандартные а.к. (кроме Gly) обладают оптической активностью и относятся к L -ряду (число изомеров 2 ¹ или 2 ² ( Thr, Ile)

Изображение слайда
20

Слайд 20: Оптические свойства а.к

L- Аланин L- Аланин L- Аланин D- Аланин D- Аланин D- Аланин

Изображение слайда
21

Слайд 21: Особенности Cys

Цистеин Цистеин Цистин В составе белка остатки Cys подвергаются самопроизвольному окислению с образованием дисульфидных мостиков, которые ковалентно связывают участки полипептидных цепей

Изображение слайда
22

Слайд 22: Пептидная связь

Основной структурной единицей белков и пептидов является пептидная (амидная) связь C-N

Изображение слайда
23

Слайд 23: Строение тетрапептида из 4-х а.к

N- конец C -конец Пептидная связь Сер ил -глиц ил -тирозин ил -алан ил -лейцин Ser-Gly-Tyr-Ala-Leu

Изображение слайда
24

Слайд 24: Образование пептидной связи

Пептидная (амидная) связь Пептидная связь C-N 0,132 нм Одинарная связь C-N 0,149 нм Двойная связь С= N 0,127нм Пептидная связь имеет характер “ частично двойной ” связи, является практически плоской

Изображение слайда
25

Слайд 25: Строение пептидной связи

Особую природу пептидной связи C-N объясняют существованием 2 резонансных форм (Л. Полинг, Р. Кори). Связь C-N является частично кратной из-за взаимодействия неподеленной пары элекронов атома N c π -электронами карбонильной группы С=О (р- π сопряжение). Это приводит к затрудненному свободному вращению вокруг связи C-N (барьер вращения 63-84 кДж / моль)

Изображение слайда
26

Слайд 26: цис - транс -Изомерия пептидной группы

26 цис - транс -Изомерия пептидной группы 90% 10%

Изображение слайда
27

Слайд 27: Строение пептидной связи

N -конец C -конец Пептидная связь в белках существует в транс -форме !!! Исключения: пептидная связь может существовать в плоской цис -форме : В напряженных циклических системах (циклопептиды, производные Pro) п При большом размере заместителей у атома N (алкилированные производные а.к.) Физические методы: ИК- и ЯМР-спектроскопия

Изображение слайда
28

Слайд 28: Конфигурации и конформации молекул

Определения: Конформации молекулы – это такие варианты расположения в пространстве атомов, которые могут быть получены один из другого вращением вокруг одинарных ковалентных связей. (Например, α -спираль и коллагеновая спираль – различные конформации полипептидной цепи). Конфигурации – это варианты взаимного расположения атомов молекулы, переходы между которыми требуют разрыва ковалентных связей. (Например, D - и L- изомеры а.к.- различные конфигурации а.к.)

Изображение слайда
29

Слайд 29: Вращение валентных связей в полипептидной цепи

Двугранные углы между связями: φ – угол вращения вокруг связи N- С α ψ – угол вращения вокруг связи C α -C Значения двугранных углов между связями N- С α и C α -C не могут быть произвольными!!! Некоторые пары значений ( φ, ψ ) запрещены ввиду стерических ограничений.

Изображение слайда
30

Слайд 30: Конформационная карта Рамачандрана

( φ, ψ )-карта показывает, какие пары значений углов φ и ψ разрешены для данного остатка а.к.

Изображение слайда
31

Слайд 31: Конформационные карты Рамачандрана

Изображение слайда
32

Слайд 32: Конформационные карты Рамачандрана

Регулярные структуры: спиральные, β -складчатые

Изображение слайда
33

Слайд 33: Биологическая роль пептидов

Нейропептиды – пептиды мозга, способные влиять на функции центральной нервной системы Энкефалины и эндорфины – «опиоидные пептиды», действующие на морфиновые (опиатные) рецепторы головного мозга, способны подавлять боль и вызывать чувство эйфории. Tyr- Gly - Gly - Phe -Met - Met - энкефалин Ner-Gly-Gly-Phe-Leu - Leu - энкефалин ( Д.Хьюз, 1975) Окситоцин (10 а.к.) и вазопрессин (10 а.к.) – нейрогормоны (сокращение гладкой мускулатуры, сосудов и капилляров, регулция водного обмена и др.). Синтезируются в гипоталамусе. Пептиды сна (9 а.к.) И другие

Изображение слайда
34

Слайд 34: Биологическая роль пептидов

Нейропептиды – пептиды мозга, способные влиять на функции центральной нервной системы Энкефалины и эндорфины – «опиоидные пептиды», действующие на морфиновые (опиатные) рецепторы головного мозга, способны подавлять боль и вызывать чувство эйфории. Tyr- Gly - Gly - Phe -Met - Met - энкефалин Ner-Gly-Gly-Phe-Leu - Leu - энкефалин ( Д.Хьюз, 1975) Окситоцин (10 а.к.) и вазопрессин (10 а.к.) – нейрогормоны (сокращение гладкой мускулатуры, сосудов и капилляров, регулция водного обмена и др.). Синтезируются в гипоталамусе. Пептиды сна (9 а.к.) И другие

Изображение слайда
35

Слайд 35: Гормоны пептидно-белковой природы

Гормоны – биологически активные регуляторы, вырабатываются в эндокринных железах и разносятся по кровяному руслу к клеткам-мишеням. Существует 3 класса гормонов – пептидно-белковые, стероидные, биогенные амины (адреналин). Белковые гормоны – все гормоны гипоталамуса, некоторые гормоны гипофиза и др. (соматотропин, тиротропин, гонадотропин, пролактин, инсулин, паратропин). Пептидные гормоны – окситоцин, вазопрессин, глюкагон, гастрин, кальцитонин, тканевые гормоны брадикинин и ангиотензин.

Изображение слайда
36

Слайд 36

ЦНС Гипоталамус Гормоны гипоталамуса Передняя доля гипофиза Задняя доля гипофиза Первичные мишени Вторичные мишени Конечные мишени Сенсорные сигналы Функциональная иерархия гормональной регуляции

Изображение слайда
37

Слайд 37: Антибиотики белково-пептидной природы

Антибиотики – химические агенты, продуцируемые микроорганизмами, обладают прямым и избирательным ингибирующим действием на живые клетки (антибактериальные, противовирусные, противогрибковые, противоопухолевые антибиотики). Пептидные антибиотики : грамицидины А, В, С, S, полимиксины, актиномицины, валиномицин и многие другие. Белковые антибиотики : неокарциностатин, актиноксантин и другие.

Изображение слайда
38

Слайд 38: Токсины пептидно-белковой природы

Пептидные токсины: ядовитых грибов (бледной поганки - циклопептиды), яда пчел (мелиттин 26 а.к.), яда змей, морских беспозвоночных (нейротоксины). Белками являются самые мощные из известных токсинов микробного происхождения : Ботулинический токсин Столбнячный токсин Дифтерийный токсин Холерный токсин Белки – зоотоксины ( змей, скорпионов, пауков, и др.) Белки – фитотоксины (рицин из клещевины)

Изображение слайда
39

Слайд 39: Пептидные токсины бледной поганки

α -Аманитин

Изображение слайда
40

Слайд 40: Пептиды со вкусовыми качествами

Пептиды со вкусовыми качествами : Заменители сахара – аспартам Asp-Phe-OMe ( в 200 раз слаще сахара, низкая калорийность) “ Вкусный пептид ” Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala ( получают при обработке мяса папаином) Белки с интенсивным сладким вкусом – тауматин (207 а.к.) и монеллин (94 а.к.) из плодов африканских растений (слаще сахара в 100 000 раз)

Изображение слайда
41

Слайд 41: Уровни структурной организации белка

Первичная структура Последовательность аминокислот α - Спираль Полипептидная цепь Ансамбль субъединиц Вторичная структура Третичная структура Четвертичная структура

Изображение слайда
42

Слайд 42: Функции белков

Регуляция Движение Структура Катализ Транспорт Сигнализация Третичная структура Вторичная структура Первичная структура Четвертичная структура Супрамолекулярная структура Функции

Изображение слайда
43

Слайд 43: Первичная структура белка

Первичная структура белка – это аминокислотная последовательность белка, т.е. состав и расположение а.к. в полипептидной цепи. Образуется ковалентными пептидными и дисульфидными связями !!!!

Изображение слайда
44

Слайд 44: Вторичная структура белка

Вторичная структура белка – упорядоченные структуры полипептидных цепей, стабилизированные водородными связями между пептидными СО и NH -группами. Типы вторичных структур : α -спираль β -складчатая структура неупорядоченный клубок ( random coil) Первичная структура Вторичная структура

Изображение слайда
45

Слайд 45: Вторичная структура белка - α -спираль

N -конец C -конец 0,54 нм 3,6 а.к. на 1 виток Характеристики α -спирали : 18 а.к. образуют 5 витков спирали 1 виток – 3,6 а.к., h = 0,54 нм каждая а.к. образует водородную связь СО - - - NH c четвертой по порядку следования по цепи аминокислотой Стабилизируют α -спираль : Ala, Val, Leu, Phe, Trp, Met, His, Gln Дестабилизируют α -спираль : Gly, Glu, Asp, Ile, Lys, Arg, Tyr, Asn, Ser, Cys Pro обычно расположен на повороте α - спирали

Изображение слайда
46

Слайд 46: Вторичная структура белка - α -спираль

В белках встречаются только правые α -спирали α -Спираль характеризуется предельно плотной упаковкой скрученной полипептидной цепи Водородные связи СО - - - NH

Изображение слайда
47

Слайд 47: Вторичная структура белка - β -складчатая структура

β -Складчатая структура или “ складчатый лист ” – это ассоциат вытянутых зигзагообразных пептидных цепей, стабилизированный межцепочечными водородными СО - - - NH связями 0,272 нм

Изображение слайда
48

Слайд 48: Вторичная структура белка - β -складчатая структура

Параллельная структура Антипараллельная структура Вид сбоку Вид сбоку

Изображение слайда
49

Слайд 49: Сверхвторичная структура белка

Сверхвторичная структура – наличие ансамблей взаимодействующих между собой вторичных структур. Пример – агрегация α -спиралей (суперспирализованная система). ( Белок α -кератин шерсти). Т.о., полипептидная цепь белка содержит определенное число участков вторичной структуры ( α, β ), а также участки неупорядоченной структуры.

Изображение слайда
50

Слайд 50: Третичная структура белка

Полипептидная цепь, содержащая определенное число участков вторичной структуры, обычно свертывается в относительно компактную систему, в которой элементы вторичной структуры взаимодействуют между собой и с участками неупорядоченной структуры. Для многих белков третичная структура эквивалентна пространственной структуре белка Каждый белок обладают своей уникальной пространственной структурой

Изображение слайда
51

Слайд 51: Третичная структура белка

α β α / β

Изображение слайда
52

Слайд 52: Четвертичная структура белка

Четвертичная структура характерна для белков, состоящих из нескольких полипептидных цепей. Она возникает в результате ассоциации нескольких субъединиц в компактную глобулу. Это взаимное расположение субъединиц белка в пространстве. 4 субъединицы в белке 2 субъединицы в белке 1 2 субъединиц в белке

Изображение слайда
53

Слайд 53: Стадии образования нативной конформации белка ( Folding белков )

Образование пространственной структуры белка – процесс сложный и многостадийный 36 а.к. – 1 мс

Изображение слайда
54

Слайд 54: Folding белков. Белки - шапероны

Шапероны – это белки, которые помогают полипептиду принять Правильную пространственную структуру. Белки теплового шока ( Hsp ) впервые были описаны как шапероны

Изображение слайда
55

Слайд 55: Проблема правильного сворачивания белка. Прионы

Нейродегенеративные болезни (губчатые энцефалопатии) вызывают белковые факторы – прионы, функционирующие как антишапероны

Изображение слайда
56

Слайд 56: История открытия прионных болезней

1898 г. – необычное заболевание овец «скрепи» 1939 г. – экспериментальное заражение овец болезнью «скрепи» 1961 г. – инфекционная природа «скрепи» (заболевания клеток головного мозга) доказана 1920 -1921 г. - выявлено новое заболевание у людей (болезнь Крейцфельда –Якоба), оно может возникать спонтанно, передаваться по наследству, а также инфекционным путем.

Изображение слайда
57

Слайд 57: История открытия прионных болезней

1955 -1957 гг., Папуа-Новая Гвинея - «куру» («смеющаяся смерть»), новое эндемичное заболевание, по симптомам схожее с болезнью К.-Я. 1992 г., Англия Эпидемия коровьего бешенства, заболело примерно 180000 коров Болезнь передавалась людям, в конце 90-х годов скончалось около 200 чел

Изображение слайда
58

Слайд 58: Открытие прионов

1998 г., С.Б. Прузинер - Нобелевская премия за открытие прионов Прионы - это особые белковые молекулы: не содержат ни ДНК, ни РНК; - находятся в тканях здоровых людей и млекопитающих и не наносят вред; - под влиянием некоторых факторов превращаются в маленькие частицы - патогенные; - не подвластны многим воздействиям (выносят кипячение в течение 30 минут, высушивание до 2-х лет, замораживание в 2 раза больше, чем известные вирусы, химической обработке спиртами, кислотами, рентген облучение - не убивает прионы. Только ферменты - трипсин, протеиназа в максимальных дозах денатурируют этот белок. (Иначе говоря, из всего живого прион погибает последним); - накапливаются в мозгу человека или животного и вызывают там необратимые изменения, т.н. губчатые энцефалопатии, размягчение мозга - у людей это БКЯ.

Изображение слайда
59

Слайд 59: Устойчивость прионов к различным воздействиям

Изображение слайда
60

Слайд 60: Неправильное сворачивание белка-приона –причина болезней

Накопление белковых агрегатов в нервной ткани Строение нормального белка-приона (слева) и аномально свернутого (справа)

Изображение слайда
61

Слайд 61: Прионные болезни человека и животных

Изображение слайда
62

Слайд 62

Возможные модели нейротоксического действия агрегатов неправильно свернутых белков

Изображение слайда
63

Слайд 63: Возможные способы для предотвращения неправильного сворачивания белка и его агрегации

Изображение слайда
64

Слайд 64: Глобулярные и фибриллярные белки

Белки образуют при свертывании : Компактные структуры сферической формы (глобулуы) - Глобулярные белки Достаточно вытянутое волокно - Фибриллярные белки Волокна белка коллагена Миоглобин кита ( синим цветом показаны гидрофобные остатки а.к., красным цветом –остаток гема)

Изображение слайда
65

Слайд 65: Глобулярные и фибриллярные белки

Глобулярные белки : более сложные по конформации, чем фибриллярные белки способны выполнять самые разные функции в клетках активность этих белков носит динамический характер (ферменты) Свойства глобулярных белков : водорастворимые и амфифильные (мембранные) белки – почти все гидрофобные R - группы скрыты внутри глобулы и экранированы от взаимодействия с Н 2 О, а гидрофильные R - группы находятся на поверхности глобулы в гидратированном состоянии. Фибриллярные белки : представляют собой вытянутые и складчатые структуры выполняют в клетках и тканях структурную функцию нерастворимые в воде, плотные белки Примеры : α -кератин, β -кератин, коллаген, эластин

Изображение слайда
66

Слайд 66: Денатурация и ренатурация белка

Денатурация белка – это структурные изменения в молекуле белка (без разрыва ковалентных связей), которые приводят к потере его биологической активности. Денатурацию белков ызывает нагревание, изменение рН, обработка детергентами, органическими растворителями и др. Денатурация белка – обратимая и необратимая. Ренатурация – восстановление структуры и биологической активности Нативный белок Денатурированный белок

Изображение слайда
67

Слайд 67: Как определить структуру белка

РСА (третичная и четвертичная структура) Методы КД и ДОВ (вторичная структура) ИК- и ЯМР-спектроскопия высокого разрешения (вторичная и третичная структура) Электроно- и нейтронографические методы (третичная и четвертичная структура)

Изображение слайда
68

Слайд 68: Функции белков

Регуляция Движение Структура Катализ Транспорт Сигнализация Третичная структура Вторичная структура Первичная структура Четвертичная структура Супрамолекулярная структура Функции

Изображение слайда
69

Слайд 69: Белки-Ферменты

Ферменты – это специфические и высокоэффективные катализаторы биохимических реакций, протекающих в живой клетке (скорость реакции может увеличиваться в 10 ¹º раз). Особенности белков-ферментов : Высокая активность Высокая специфичность Высокая стереоспецифичность

Изображение слайда
70

Слайд 70: Белки-Ферменты

Принципы ферментативной кинетики

Изображение слайда
71

Слайд 71: Активный центр ферментов

Активный центр фермента может состоять : только из а.к. остатков белка – лактатдегидрогеназа (а), содержать ионы металлов - алкогольдегидрогеназа (б), ионы металлов в составе сложных органических молекул – гем (в, г)

Изображение слайда
72

Слайд 72: Транспортные белки

Транспортные белки участвуют в переносе различных веществ и ионов. Примеры : Гемоглобин ( переносит О 2 от легких к тканям ) Миоглобин ( переносит О 2 в мышечной ткани ) Цитохром с (транспорт электронов в дыхательной цепи) Сывороточный альбумин (транспорт жирных кислот в крови) Мембранные белки – каналообразователи (транспорт веществ и ионов через биологические мембраны)

Изображение слайда
73

Слайд 73: Гемоглобин

Структура гема Структура активного центра гемоглобина Гемоглобин –тетрамер : 2 α -субъединицы (141 а.к.) 2 β -субъединицы (146 а.к.)

Изображение слайда
74

Слайд 74: Гемоглобин и миоглобин

Структура миоглобина Кривые оксигенации миоглобина (а) и гемоглобина (б)

Изображение слайда
75

Слайд 75: Гемоглобин

Серповидноклеточная анемия – это “ молекулярная болезнь ” гемоглобина, наследственная генетическая аномалия. Серповидные эритроциты очень хрупкие, легко разрываются – низкий уровень гемоглобина в крови, а также эритроцитами неправильной формы блокируются кровенсные капилляры. Аномальный гемоглобин – гемоглобин S: замена Glu (6) → Val (6) (2 а.к. из 574 !!!)

Изображение слайда
76

Слайд 76: Защитные белки

Защитные белки участвуют в проявлении защитных реакций организма. Белки иммунной системы (иммуноглобулины, белки системы комплемента (20 белков), антигены тканевой совместимости, интерлейкины, интерфероны и т.п.) Белки системы свертывания крови (фибриноген, фибрин, тромбин) Структура Ig Связыванием иммуноглобулином (Ат) чужеродной молекулы (Аг)

Изображение слайда
77

Слайд 77: Пищевые и запасные белки

Пищевые белки : Казеин молока Альбумин яичный Глиадин пшеницы Зеин ржи Запасные белки : Ферритин ( “ депо ” Fe в селезенке)

Изображение слайда
78

Слайд 78: Белки-гормоны

Гормоны – биологически активные регуляторы, вырабатываются в эндокринных железах и разносятся по кровяному руслу к клеткам-мишеням. Существует 3 класса гормонов – пептидно-белковые, стероидные, биогенные амины (адреналин). Белковые гормоны – все гормоны гипоталамуса, некоторые гормоны гипофиза и др. (соматотропин, тиротропин, гонадотропин, пролактин, инсулин, паратропин). Пептидные гормоны – окситоцин, вазопрессин, глюкагон, гастрин, кальцитонин, тканевые гормоны брадикинин и ангиотензин.

Изображение слайда
79

Слайд 79: Рецепторные белки

Рецепторные белки : Родопсин зрительного аппарата животных (восприятие и преобразование световых сигналов) Бактериородопсин галофильных бактерий Мембранные белки - рецепторы различных гормонов (передают сигнал от гормона внутрь клетки и обеспечивают запуск механизма клеточного ответа) Рецепторы клеточной поверхности эритроцитов, лимфоцитов, макрофагов (выработка организмом иммунного ответа) Рецепторы нейропептидов головного мозга (регуляция поведения и высшей нервной деятельности)

Изображение слайда
80

Слайд 80: Регуляторные белки и пептиды

Регуляторные белки необходимы для функционирования различных звеньев клеточного метаболизма : Гистоны, репрессоры, рибосомальные факторы инициации транскрипции и т.п. (регулируют активность генов и биосинтез белка). “ Воротные ” белки мембранных каналов (регулируют транспорт через биомембраны).

Изображение слайда
81

Слайд 81: Структурные белки

Структурные белки составляют остов многих тканей и органов. Являются фибриллярными белками Это белки соединительной ткани : коллаген (кости, хрящи, кожа, сухожилия) α - и β - кератины (волосы, шерсть, чешуя, панцири и т.д.) эластин (связки, стенки сосудов и др.) фиброин (шелк, паутина) протеогликаны ( клеточные стенки бактерий)

Изображение слайда
82

Слайд 82: Структурные белки

Коллаген образует основу сухожилий, хрящей, кожи, зубов и костей. Структурная единица волокон коллагена – тропоколлаген. Тропоколлаген – это ассоциат из 3-х навитых друг на друга полипептидных цепей ( по 1000 а.к.), каждая из которых образует изломанную спираль особого типа (21% Pro и Гидрокси Pro ). Фибриллы коллагена нерастяжимы и имеют большую прочность на разрыв. Тропоколлаген Фибриллы коллагена Коллаген

Изображение слайда
83

Слайд 83: Структурные белки

Поперечное сечение волоса α - Кератины – нерастворимые в воде, плотные белки (присутствие большого числа α -спиральных участков – 2-3 а.к. цепи закручиваются одна вокруг другой ) : Волосы, шерсть, чешуя рыб, рога, копыта, панцири и т.п.

Изображение слайда
84

Слайд 84: Структурные белки

α - Кератин Пример биохимической технологии Что здесь изображено ?

Изображение слайда
85

Слайд 85: Структурные белки

β - Кератин – фиброин (шелка и паутины) : нерастворимый в воде, слабо растяжимый белок имеет антипараллельную β - складчатую структуру Структура фиброина шелка “ Производство ” белка-фиброина пауком

Изображение слайда
86

Слайд 86: Двигательные белки

Двигательные белки : Актин и миозин (сократительный аппарат мышц) Динеин (реснички и жгутики простейших) Спектрин (мембраны эритроцитов)

Изображение слайда
87

Слайд 87: Антибиотики белково-пептидной природы

Антибиотики – химические агенты, продуцируемые микроорганизмами, обладают прямым и избирательным ингибирующим действием на живые клетки (антибактериальные, противовирусные, противогрибковые, противоопухолевые антибиотики). Пептидные антибиотики : грамицидины А, В, С, S, полимиксины, актиномицины, валиномицин и многие другие. Белковые антибиотики : неокарциностатин, актиноксантин и другие.

Изображение слайда
88

Слайд 88: Токсины пептидно-белковой природы

Белками являются самые мощные из известных токсинов микробного происхождения : Ботулинический токсин Столбнячный токсин Дифтерийный токсин Холерный токсин Белки – зоотоксины ( змей, скорпионов, пауков, и др.) Белки – фитотоксины (рицин из клещевины) Пептидные токсины (ядовитых грибов, яда пчел, морских беспозвоночных)

Изображение слайда
89

Слайд 89: Пептиды со вкусовыми качествами

Пептиды со вкусовыми качествами : Заменители сахара – аспартам Asp-Phe-OMe ( в 200 раз слаще сахара, низкая калорийность) “ Вкусный пептид ” Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala ( получают при обработке мяса папаином) Белки с интенсивным сладким вкусом – тауматин (207 а.к.) и монеллин (94 а.к.) из плодов африканских растений (слаще сахара в 100 000 раз)

Изображение слайда
90

Последний слайд презентации: Основы биохимии. Лекция №2

Изображение слайда