Презентация на тему: Нефтяные масла

Нефтяные масла
ОПРЕДЕЛЕНИЕ
Нефтяные масла
ОБЛАСТЬ ПРИМЕНЕНИЯ МАСЕЛ
ТРЕБОВАНИЯ К МАСЛАМ
ВЯЗКОСТЬ
Нефтяные масла
Вязкостно-температурные свойства
Нефтяные масла
Нефтяные масла
Подвижность при низких температурах
Нефтяные масла
Смазывающая способность
Химическая стабильность
Нефтяные масла
Нефтяные масла
1/16
Средняя оценка: 4.3/5 (всего оценок: 67)
Код скопирован в буфер обмена
Скачать (805 Кб)
1

Первый слайд презентации: Нефтяные масла

Сазонова Е.А.

Изображение слайда
2

Слайд 2: ОПРЕДЕЛЕНИЕ

Нефтяные масла представляют собой смесь жидких высококипящих фракций, очищенных от нежелательных примесей. Нефтяные масла иногда называют минеральными - с тем, чтобы отличить от синтетических масел, которые представляют собой органические соединения, полученные многоступенчатым синтезом. По способу выделения из нефти минеральные масла подразделяют на дистиллятные, остаточные и компаундированные, т. е. получаемые смешением дистиллятных и остаточных компонентов.

Изображение слайда
3

Слайд 3

Изображение слайда
4

Слайд 4: ОБЛАСТЬ ПРИМЕНЕНИЯ МАСЕЛ

По области применения нефтяные масла подразделяют на смазочные и специальные. В свою очередь смазочные масла делят на индустриальные, моторные, масла для прокатных станов, вакуумные, цилиндровые, энергетические, трансмиссионные, осевые, приборные, гидравлические.

Изображение слайда
5

Слайд 5: ТРЕБОВАНИЯ К МАСЛАМ

Основными эксплуатационными характеристиками нефтяных смазочных масел являются вязкостно-температурные свойства, подвижность при низких температурах, устойчивость против окисления.

Изображение слайда
6

Слайд 6: ВЯЗКОСТЬ

Вязкость. Требования, предъявляемые к вязкости смазочных масел, весьма различны; они зависят от характера и скорости движения трущихся поверхностей, удельных нагрузок. Так, вязкость автомобильных масел составляет 6—12 мм 2 /с, а для смазывания подшипников машин резиновой промышленности необходимо масло вязкостью 175—220 мм 2 /с ( оба значения при 100 °С ).

Изображение слайда
7

Слайд 7

Вязкость масляных фракций, полученных из одной и той же нефти, растет с увеличением температурных пределов перегонки фракций. Вязкость зависит от углеводородного состава масляных фракций, который в свою очередь определяется химическим составом нефти и способом удаления нежелательных компонентов (очистки). Наименьшую вязкость имеют алканы. Удаление алканов из масляных фракций увеличивает вязкость масел. Разветвленные алканы по вязкости незначительно отличаются от нормальных. Вязкость циклоалканов и аренов заметно выше, чем алканов, причем вязкость аренов выше, чем вязкость циклоалканов. При удалении из масляных фракций аренов и циклоалкано-аренов наблюдается снижение вязкости масел.

Изображение слайда
8

Слайд 8: Вязкостно-температурные свойства

Для оценки вязкостно-температурных свойств применяют два показателя: коэффициент вязкости и индекс вязкости. Коэффициент вязкости представляет собой отношение кинематической вязкости масла при 50 и 100 °С или при двух любых других температурах, соответствующих крайним значениям интервала температур работы исследуемого масла. Для масел с пологой температурной кривой вязкости характерны низкие значения коэффициента вязкости. Коэффициент вязкости не полностью отражает ход кривой изменения вязкости масел в зависимости от температуры и потому не получил широкого распространения.

Изображение слайда
9

Слайд 9

Общепринятой является оценка вязкостно-температурных свойств масел по индексу вязкости (ИВ). В России индекс вязкости определяют по специальным стандартным таблицам в зависимости от вязкости масла при 50 и 100 °С. Вязкость масел зависит от температуры и углеводородного состава масел. Наиболее пологую кривую зависимости вязкости от температуры имеют нормальные алканы, ИВ у них превышает 200. У алканов с разветвленной цепью он ниже и уменьшается с увеличением степени разветвленности.

Изображение слайда
10

Слайд 10

Для циклических аренов и циклоалканов характерны следующие особенности : 1) вязкостно-температурные свойства улучшаются с увеличением отношения углеродных атомов боковых алкильных цепях к числу углеродных атомов в циклической части молекул; 2) ИВ снижается при увеличении числа колец в молекуле углеводорода; 3) ИВ алкилзамещенных бензола, циклогексана, нафталина и декалина растет почти пропорционально числу углеродных атомов в молекуле; 4) циклоалканы имеют лучшие вязкостнотемпературные свойства, чем арены. Чтобы получить масла с высокими вязкостно-температурными свойствами, необходимо максимально удалить из масляных фракций смолисто-асфальтеновые вещества, извлечь (но не полностью) полициклические арены с короткими боковыми цепями. В масле должны быть полностью сохранены алкилзамещенные циклоалканов, аренов и циклоалканоаренов с большим числом углеродных атомов в боковой цепи.

Изображение слайда
11

Слайд 11: Подвижность при низких температурах

Потеря подвижности масел при низких температурах происходит по двум причинам: из-за резкого повышения вязкости масла и вследствие появления в масле структур, состоящих из кристаллов твердых углеводородов. В первом случае масло сохраняет все свойства ньютоновской жидкости, хотя и становится практически неподвижным. Во втором случае оно приобретает свойства, присущие дисперсным (неньютоновским) системам: вязкость масла начинает зависеть от скорости сдвига и от времени приложения нагрузки.

Изображение слайда
12

Слайд 12

Показателем, контролирующим подвижность масел при низких температурах, является температура застывания. Температура застывания автомобильных и дизельных масел колеблется от —10 до —40 °С, а для масел, применяющихся в турбореактивных авиационных двигателях, должна быть не выше —55 °С. Низкозастывающие масла получают, удаляя из фракций твердые алканы, полициклические арены и циклоалканоарены с короткой цепью.

Изображение слайда
13

Слайд 13: Смазывающая способность

В ряде случаев, когда смазочные масла применяют при больших нагрузках и малых скоростях, не удается получить стабильный смазывающий слой определенной толщины. Поэтому большое значение приобретает возможность создания на металлической поверхности очень тонкого (0,1—1,0 мкм), но прочного смазочного слоя. Этот тип смазки носит название граничной смазки, а способность масел создавать такой слой характеризуют термином маслянистость, или смазывающая способность.

Изображение слайда
14

Слайд 14: Химическая стабильность

Для масел (турбинных, компрессорных, моторных и др.), которые многократно циркулируют через узлы трения, одним из важнейших показателен является стойкость против окисления кислородом воздуха. Окисление компонентов масла представляет собой сложный процесс, развитие которого зависит от химического и прежде всего углеводородного состава масел, а также от условий эксплуатации. Показано, что первичными продуктами окисления углеводородов являются пероксиды, которые затем разлагаются и превращаются в другие кислородсодержащие соединения.

Изображение слайда
15

Слайд 15

Стойкость масел к воздействию кислорода характеризуют следующие показатели: общая склонность масел к окислению; коррозионная активность масел; склонность к лакообразованию ; склонность к образованию осадка в двигателях внутреннего сгорания. Для определения этих показателей предложен комплекс методов лабораторных и моторных испытаний.

Изображение слайда
16

Последний слайд презентации: Нефтяные масла

Изображение слайда