Презентация: ’’ Місце математики в моєму житті і в житті людства ’’

’’ Місце математики в моєму житті і в житті людства ’’ ’’ Що представляє нам наука-Математика? ’’ Історія Математики ’’ Місце математики в моєму житті і в житті людства ’’ ’’ Місце математики в моєму житті і в житті людства ’’ Найвідоміші математики світу Математик-Архімед(близько 287 р. до н. е.-212 р. до н. е. в Сіракузі) Математик-Ісаак Ньютон Мої побажання вам :
1/9
Средняя оценка: 4.5/5 (всего оценок: 65)
Скачать (804 Кб)
Код скопирован в буфер обмена
1

Первый слайд презентации: ’’ Місце математики в моєму житті і в житті людства ’’

Урок до Дня Математики готувала учениця 6-А класу Чича Єлизавета Дмитрівна

2

Слайд 2: ’’ Що представляє нам наука-Математика? ’’

Матема́тика  — наука, яка первісно виникла як один з напрямків пошуку істини у сфері просторових відношень (землеміряння — геометрії) і обчислень (арифметики), для практичних потреб людини рахувати, обчислювати, вимірювати, досліджувати форми та рух фізичних тіл. Пізніше розвинулась у досить складну і багатогранну науку про абстрактні кількісні та якісні співвідношення, форми і структури. Загальноприйнятого визначення математики немає. Початково вона використовувалася для підрахунку, вимірювання, а також для вивчення форм і руху фізичних об'єктів шляхом дедуктивних розмірковувань та абстракцій. Математики формулюють нові висновки і намагаються встановити їх справедливість, виходячи з вдало вибраних аксіом і визначень.

3

Слайд 3: Історія Математики

Математика виникла з давніх-давен з практичних потреб людини, її зміст і характер з часом змінювались. Від початкового предметного уявлення про ціле додатне число, від уявлення про відрізок прямої, як найкоротшу відстань між двома точками. Математика пройшла довгий шлях розвитку, перш ніж стала абстрактною наукою з точно сформованими вихідними поняттями і специфічними методами дослідження. Нові вимоги практики, розширюють обсяг понять математики, наповнюють новим змістом старі поняття. Поняття математики абстраговані від якісних особливостей специфічних для кожного даного кола явищ і предметів. Ця обставина дуже важлива у застосуванні математики. Так, число 2 не має якогось певного предметного змісту. Воно може відноситися і до двох книг, і до двох верстатів, і до двох ідей. Воно добре застосовується і до цих і до багатьох інших об'єктів. Так само геометричні властивості кулі не змінюються від того, зроблено її зі сталі, міді чи скла. Звичайно, абстрагування від властивостей предмету збіднює наші знання про цей предмет і його характерні матеріальні особливості. В той же час саме це абстрагування надає математичним поняттям узагальненості, даючи можливість застосовувати математику до найрізноманітніших за природою явищ. Це означає, що одні й ті ж закономірності математики, один і той же математичний апарат можуть бути достатньо успішно застосовані до біологічних, технічних, економічних та інших процесів.

4

Слайд 4

Абстрагування в математиці не є її винятковою особливістю, оскільки всілякі загальні поняття містять в собі деякий елемент абстрагування від властивостей конкретних речей. Але в математиці цей процес йде далі, ніж у природничих науках. У ній широко використовують процес абстрагування різних ступенів. Наприклад, поняття групи виникло внаслідок абстрагування від деяких властивостей чисел та інших уже абстрактних понять. У математиці специфічним є також метод одержання результатів. Якщо природознавець, доводячи будь-яке твердження, завжди використовує дослід, то математик доводить свої результати лише на основі логічних міркувань. Жодний результат у математиці не можна вважати доведеним, поки йому не дано логічного обґрунтування, хоч спеціальні досліди і підтвердили його. В той же час істинність математичних теорій перевіряється на практиці, але ця перевірка має особливий характер. Висуваються математичні теорії реальних явищ, а висновки з цих теорій перевіряються на досліді. Однак зв'язки математики з практикою є ширшими, бо поняття математики: теореми, задачі, математичні теорії пов'язані із запитами практики. З часом ці зв'язки стають глибшими і різноманітнішими. Математику можна застосувати до вивчення будь-якого типу руху. Історія Математики

5

Слайд 5

Проте в дійсності її роль в різних галузях наукової і практичної діяльності неоднакова. Особливо великою є роль математики у вивченні тих явищ, для яких навіть значне абстрагування від їхніх специфічних якісних характеристик не змінює істотно притаманних цим явищам кількісних і просторових закономірностей. Наприклад, у небесній механіці тіла вважають матеріальними точками (тобто абстрагуються від реальності); обчислені таким способом рухи небесних тіл збігаються з дійсними рухами цих тіл. Користуючись математичним апаратом, можна не тільки дуже точно передобчислювати небесні явища (затемнення, положення планет тощо), але й за відхиленням істинних рухів від обчислених зробити висновок про наявність невидимих неозброєним оком небесних тіл. Саме так було відкрито планети Нептун (1846) і Плутон (1930). В зв'язку з бурхливим розвитком космічних польотів небесна механіка набула все більшого значення. Механіка і фізика стали, по суті, математичними науками. Менше, але все ж значне місце посідає математика в економіці, біології, медицині, лінгвістиці. Для цих наук особливого значення набула математична статистика. Якісна своєрідність явищ, що вивчаються, наприклад, у біології, настільки значна, що роль математичного аналізу при дослідженні їх поки що є підпорядкованою. Процес математизації наук, що почався з 18 ст., тепер набув винятково інтенсивного розвитку.

6

Слайд 6: Найвідоміші математики світу

Йоганн Карл Фрідріх Гаус(30.04.1777-23.02.1855), у всій історії математики немає нікого, кого б можна було порівняти з Гаусом за ранньою обдарованістю. Він виявив її, коли йому не було й трьох років. Ще за життя його вважали р і вним Архімеду і Ньютону, і називали королем математики, хоча походження Гауса було далеко не королівським. Гаус ще також згадував жартома, що він навчився рахувати раніше, ніж навився говорити.

7

Слайд 7: Математик-Архімед(близько 287 р. до н. е.-212 р. до н. е. в Сіракузі)

Архімед  — давньогрецький математик, фізик та інженер, один з найвидатніших вчених античності. Обчислив площу сегмента параболи, поверхню та об'єм кулі, кульового сегмента й циліндра. Обчислив наближене значення числа π, сформулював основні положення гідростатики, створив низку машин і споруд.

8

Слайд 8: Математик-Ісаак Ньютон

саа́к Нью́то́н ( 4 січня 1643, Вулсторп — 31 березня 1727) — видатний англійський учений, який заклав основи сучасного природознавства, творець класичної фізики. 1665 — закінчив Кембриджський університет (у 1669-1701 очолював у ньому кафедру). З 1695 — доглядач, з 1699 — директор Королівського монетного двору. Його наукові праці належать до механіки, оптики, астрономії, математики. Сформулював основні закони класичної механіки, відкрив закон всесвітнього тяжіння, дисперсію світла, розвив корпускулярну теорію світла, розробив (незалежно від Ґ.Лейбніца) диференціальне та інтеґральне числення.

9

Последний слайд презентации: Мої побажання вам :

Вчіться!Поки не пізно!І запам ’ ятайте : Математика-точна наука!!!І її треба вчити і розуміти …

Похожие презентации

Ничего не найдено