Презентация на тему: МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА

Реклама. Продолжение ниже
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
Средства коллективной защиты от шума на пути его распространения
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
Пути проникновения шума:
Физические принципы и основные закономерности звукоизоляции и звукопоглощения
Основные средства звукоизоляции
Звукоизоляция
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
Звукоизоляция
Звукоизоляция
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
Частотные диапазоны звукоизоляции однослойного ограждения
Частотная характеристика изоляции воздушного шума однослойным плоским ограждением
Звукоизоляция двойных ограждений.
ЗВУКОИЗОЛЯЦИЯ
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
Задание
1/25
Средняя оценка: 4.1/5 (всего оценок: 96)
Код скопирован в буфер обмена
Скачать (1184 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации: МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА

Лекции по курсу Промакустика

Изображение слайда
1/1
2

Слайд 2

ГОСТ 12.1.029-80 ССБТ. Средства и методы защиты от шума. Классификация СП 51.13330.2011 Защита от шума. Актуализированная редакция СНиП 23-03-2003

Изображение слайда
1/1
3

Слайд 3

Воздушный шум - шум, распространяющийся в воздушной среде от источника возникновения до места наблюдения. Структурный шум - шум, излучаемый поверхностями колеблющихся конструкций стен, перекрытий, перегородок зданий в звуковом диапазоне частот.

Изображение слайда
1/1
4

Слайд 4

Изображение слайда
Изображение для работы со слайдом
1/2
5

Слайд 5: Средства коллективной защиты от шума на пути его распространения

Изображение слайда
Изображение для работы со слайдом
1/2
6

Слайд 6

средний по времени уровень звукового давления  L peq,Т, дБ ( time-averaged   sound   pressure   level ): Уровень звукового давления постоянного шума, который на интервале времени  Т  имеет такое же среднеквадратичное значение, что и рассматриваемый непостоянный шум. Примечания 1 Средний по времени уровень звукового давления (далее - эквивалентный уровень звукового давления) является основной величиной для оценки иммиссии на рабочих местах и оценки воздействия  шума  на людей.

Изображение слайда
1/1
7

Слайд 7

А) эмиссия Б) иммиссия В) Экспозиция ГОСТ Р 52797.1- 2007 Акустика. Рекомендуемые методы проектирования малошумных рабочих мест производственных помещений. Часть 1. Принципы защиты от шума характеристика иммиссии и экспозиции шума  L   Т 0, дБ ( noise   immission   and   noise   exposure   descriptors ): Величина, представляющая собой эквивалентный уровень звука, отнесенный к номинальной продолжительности рабочего дня. L   Т 0  =  L   Т e  + 10 lg ( T e / T 0 ) где  T 0  - регламентируемый временной интервал (например, 8 ч) и  T e  - продолжительность воздействия шума ( T e   £   T 0 ).

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
1/5
Реклама. Продолжение ниже
8

Слайд 8: Пути проникновения шума:

1 — через ограждение; 2 — через отверстия; 3 — по строительным конструкциям 1) через ограждение, которое под действием переменного давления падающей на него волны, колеблясь как диафрагма, излучает шум в тихое помещение; 2) непосредственно по воздуху через различного рода щели и отверстия; 3) посредством вибраций, возбуждаемых в строительных конструкциях механическим путем (удары, хождение и т. п.).

Изображение слайда
Изображение для работы со слайдом
1/2
9

Слайд 9: Физические принципы и основные закономерности звукоизоляции и звукопоглощения

τ = Е прош. / Е пад ; η = Е отр. / Е пад ; α = Е погл. / Е пад ; α + η + τ = 1 Е пад = Е отр. + Е погл + Е прош.

Изображение слайда
Изображение для работы со слайдом
1/2
10

Слайд 10: Основные средства звукоизоляции

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
1/4
11

Слайд 11: Звукоизоляция

эффект изоляции звука основан на его отражении для изоляции звука в воздухе, т.е. в среде с малым акустическим сопротивлением, следует применять преграды из материалов с большим акустическим сопротивлением (металлы, дерево, твердые пластмассы)

Изображение слайда
1/1
12

Слайд 12

Коэффициент прохождения звука τ, падающего нормально на границу двух сред можно определить по коэффициенту отражения η, который определяется через акустические импедансы Z граничащих сред η = [(Z 1 - Z 2 )/ (Z 1 + Z 2 )] 2

Изображение слайда
1/1
13

Слайд 13: Звукоизоляция

В твердых звукоизолирующих ограждениях поглощение энергии в мате-риале существенно меньше, чем отражение ( α << η ). Тогда η + τ = 1, и коэффициент прохождения можно определить как τ = 1 – η = 1 - [( Z 1 - Z 2 )/ ( Z 1 + Z 2 )] 2 = 4 Z 1 Z 2 / ( Z 1 + Z 2 ) 2

Изображение слайда
1/1
14

Слайд 14: Звукоизоляция

звуковая волна встречает препятствие в виде массивной перегородки: Z 1 = ρc, импеданс Z 2 включает как инерционное сопротивление на единицу ее площади, так и волновое сопротивление среды за стенкой Z 2 = jωm + ρc τ = 1 / [1+( ωm /2ρc) 2 ]

Изображение слайда
1/1
Реклама. Продолжение ниже
15

Слайд 15

ω = 2 πf R = 10lg(1/ τ) = 10lg [1+( πf m / ρc ) 2 ] При достаточно больших значениях произведения f m : R ≈ 20lg ( πf m / ρc ) ( f ≠ 0) – Закон массы При изменении угла падения Z = jωm cos θ R = 10lg(1/ τ) = 10lg [1+( πf m cos θ / ρc ) 2 ], где ƒ — частота, для которой проводится расчет (63, 125, 250 Гц,...); ρ — плотность среды; с — скорость звука в ней; произведение ρ с характеризует акустическое сопротивление среды, в которую излучается звук, и является постоянной величиной для нее; для воздуха (при температуре 20°С) ρ с = 410 кг * с/м 2

Изображение слайда
1/1
16

Слайд 16

звукоизоляция перегородки при изменении угла падения уменьшается. Это явление называется компонент - эффектом и наблюдается на частотах, на которых перегородка является твердой, т.е. ее изгибная жесткость не проявляется. В реальных условиях звуковое поле, воздействующее на перегородку, является диффузным, т.е. в нем все углы падения звуковых волн на перегородку равновероятны. Это уменьшает звукоизоляцию, по мнению ряда исследователей на величину = 5 дБ. Тогда, подставляя численные значения π и ρc для воздуха R = 20 lg f m – 47,5 ( дБ ) m - масса 1м 2 ограждения

Изображение слайда
1/1
17

Слайд 17

Звукоизолирующая способность ограждений тем выше, чем они тяжелее, она меняется по так называемому закону массы. Так, увеличение массы в 2 раза приводит к повышению звукоизоляции на 6 дБ. (звукоизоляция увеличивается на 6 дБ в каждой последующей октавной полосе) Звукоизолирующая способность одного и того же ограждения возрастает с увеличением частоты, т.е. на высоких частотах эффект от установки ограждения будет значительно выше, чем на низких частотах.

Изображение слайда
1/1
18

Слайд 18: Частотные диапазоны звукоизоляции однослойного ограждения

Звукоизоляция  в первом частотном диапазоне  не поддается расчету и определяется жесткостью ограждения и резонансными явлениями. Для большинства однослойных ограждений этот диапазон лежит ниже нормируемого диапазона частот. Во втором диапазоне   (начинающемся выше двух, трехкратной низшей резонансной частоты колебаний ограждения) звукоизоляция определяется по Закону массы Закон массы нарушается на частотах близких к критической частоте преграды, т.е. когда имеет место резонанс совпадения В диапазоне III сначала наблюдается ухудшение звукоизоляции вследствие возникновения явления волнового совпадения, при котором распределение давления в падающей звуковой волне вдоль ограждения точно соответствует распределению амплитуды смещения собственных изгибных колебаний ограждения, что приводит к своеобразному пространственному резонансу и интенсивному росту колебаний. Затем звукоизоляция, зависящая не только от массы, но и от жесткости ограждения, увеличивается с ростом частоты несколько быстрее, чем в диапазоне II. Уменьшение звукоизоляции начинается с частоты f > 0.5 f кр. На частотах f > 2 f кр существенное значение начинает играть жесткость ограждения и внутренние потери η. Частотная зависимость звукоизоляции ограждения I — первый пространственный резонанс; II — закон масс; III — резонанс совпадения

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
19

Слайд 19: Частотная характеристика изоляции воздушного шума однослойным плоским ограждением

Тяжелая Частотную характеристику изоляции воздушного шума однослойной плоской ограждающей конструкцией поверхностной плотностью(1 м 2 )от 100 до 1000 кг/м 2 из бетона, железобетона, кирпича, керамических блоков и т.п. материалов определяют графическим способом, изображая ее в виде ломаной линии. Координаты точки В ( f в и R в ) частотной характеристики следует определять по графикам (НТД), f в - в зависимости от толщины h в м ограждающей конструкции (НТД) и R в - в зависимости от поверхностной плотности m в кг/м 2 ограждающей конструкции (НТД). Лекгая (тонкая) Частотную характеристику изоляции воздушного шума в дБ однослойной плоской тонкой ограждающей конструкцией из металла, стекла и тому подобных материалов. Координаты точек В и С следует определять по НТД. Наклон отрезка ВА на графике следует принимать равным 5 дБ на каждую октаву для глухих однослойных ограждающих конструкций из органического и силикатного стекла и 4 дБ на каждую октаву для ограждающих конструкций из других материалов.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
20

Слайд 20: Звукоизоляция двойных ограждений

1 — падающий на изолирующую конструкцию воздушный звук; 2 —звук, прошедший в изолируемое помещение; 3 — звуковая вибрация; 4 — воздушный звук, порождаемый звуковой вибрацией.

Изображение слайда
Изображение для работы со слайдом
1/2
21

Слайд 21: ЗВУКОИЗОЛЯЦИЯ

Для повышения звукоизоляции и снижения массы ограждения применяют многослойные ограждения. Для этого пространство между слоями заполняют пористо-волокнистыми материалами и оставляют воздушную прослойку шириной 40 – 60 мм. На звукоизолирующую способность оказывает влияние масса слоя ограждения М1 и М2 и жесткость связей К, толщина слоя пористого материала или воздушной прослойки. Чем ниже упругость промежуточного материала, тем меньше передача колебаний второму ограждающему слою, и тем выше звукоизоляция (практически, двойное ограждение позволяет снизить уровень шума на 60 дБ)

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
22

Слайд 22

Двойное ограждение представляет собой колебательную систему из двух протяженных плит с массами единичной площадки m 1 и m 2 и упругой связкой между ними. Частота собственных колебаний этой системы : f 0 = 0,16 ( k / m 1 + k / m 2 ) 1/2 где k – приведенный коэффициент жесткости упругого слоя, т. е. давление, необходимое для сжатия-растяжения слоя на единицу длины, зависящий от динамического модуля упругости материала слоя Е ( k = Е/ h ). Для практических расчетов двойной перегородки с воздушным промежутком f 0 = 0, 16[C (m 1 + m 2 ) / m 1 m 1 ] 1/2, где C = ρ с 2 / h – упругость воздушного слоя, тогда f 0 = 60[(m 1 + m 2 ) / m 1 m 1 h ] 1/2

Изображение слайда
1/1
23

Слайд 23

Для одинаковых перегородок из одного материала и одной толщины f0 = 85 / ( mh )1/2 В общем случае для двойных ограждений граничные частоты различны для каждого слоя, причем нижняя частота относится к слою, имеющему большую жесткость. Самыми выгодными оказываются двойные ограждения одинаковой массы, но с различными жесткостями при изгибе. В диапазоне частот 3 f 0 < f < f гр2 значение звукоизоляции R = R 0 + ΔR, где R 0 - звукоизоляция однослойного ограждения с массой единицы площади m = m 1 + m 2, R 0 = 20 lg mf – 47,5 ΔR – дополнительная звукоизоляция ΔR = a lg (f / f 0 ) / b, где a и b – коэффициенты, определяемые видом упругого слоя

Изображение слайда
1/1
24

Слайд 24

Для пассивных и жестких преград, у которых критические частоты лежат ниже 3-5 кГц, применяют упругие мостики из резины с замкнутыми порами, мягкой монолитной резины. Жесткость этих связей D должна удовлетворять неравенству где E, S m, h – модуль Юнга, площадь поперечного сечения и длина мостика S 1, ρ 1, E 1 - толщина конструкции, плотность и модуль Юнга ее материала; f гр 1 – первая граничная частота Для преград, у которых критическая частота лежит выше 7 – 8 кГц, применяют инерционные мостики из стали, бронзы, масса которых должна удовлетворять неравенству

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
1/4
25

Последний слайд презентации: МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА: Задание

Система государственных стандартов по защите от шума (группы, перечень, требования) Строительно-акустические ( архитектурно-планировочные) мероприятия по защите от шума Индивидуальные средства защиты от шума Организационно-технические (кроме глушителей) мероприятия по защите от шума

Изображение слайда
1/1