Презентация на тему: Логические величины, операции, выражения. (10 класс)

Реклама. Продолжение ниже
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Пример 2
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
Логические величины, операции, выражения. (10 класс)
1/18
Средняя оценка: 4.5/5 (всего оценок: 99)
Код скопирован в буфер обмена
Скачать (266 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации: Логические величины, операции, выражения. (10 класс)

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
Изображение для работы со слайдом
1/9
2

Слайд 2

К числу основных понятий логики относятся: Высказывание Логическая величина Логические операции Логические выражения Формулы

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
3

Слайд 3

Высказывание (суждение) – это повествовательное предложение, в котором что-либо утверждается или отрицается. По поводу любого высказывания можно сказать, истинно оно или ложно. Например: « На улице идёт дождь» будет истинным или ложным в зависимости от состояния погоды в данный момент. Истинность высказывания «Значение больше, чем », записанного в форме неравенства: >, будет зависеть от значений переменных и.

Изображение слайда
Изображение для работы со слайдом
Изображение для работы со слайдом
1/3
4

Слайд 4

Какие из предложений являются высказываниями? Определить их истинность. Какой длины эта лента? Прослушайте сообщение. Делайте утреннюю зарядку! Назовите устройство ввода информации. Кто отсутствует? Париж — столица Англии. Число 11 является простым. 4 + 5 = 10. Без труда не вытащишь и рыбку из пруда. Сложите числа 2 и 5. Некоторые медведи живут на севере. Все медведи - бурые. Чему равно расстояние от Москвы до Ленинграда?

Изображение слайда
Изображение для работы со слайдом
1/2
5

Слайд 5

Логические величины – это понятия, выражаемые словами: ИСТИНА, ЛОЖЬ( true, false). Следовательно, истинность высказывания выражается через логические величины. Логическая переменная: символически обозначенная логическая величина. Например: если известно, что А,В,Х, Y и др. – переменные логические величины, то, значит они могут принимать значение только ИСТИНА или ЛОЖЬ. Логическое выражение – простое или сложное высказывание. Сложное высказывание строится на простых с помощью логических операций(связок)

Изображение слайда
1/1
6

Слайд 6

Логические операции Конъюнкция (логическое умножение) Двухместная операция, записывается в виде A & B. Значение такого выражения будет ЛОЖЬ, если значение хотя бы одного операнда ложно. Дизъюнкция (логическое сложение) Двухместная операция, записывается в виде A V B. Значение такого выражения будет ИСТИНА, если значение хотя бы одного операнда истинно. Отрицание – унарная(одноместная) операция. Записывается в виде ¬ А или Ā.

Изображение слайда
1/1
7

Слайд 7

Правила выполнения рассмотренных логических операций отражены в следующей таблице, которая называется таблицей истинности логических операций(здесь И «истина», Л «ложь») А В Ā A&B AvB И И Л И И И Л Л Л И Л И И Л И Л Л И Л Л

Изображение слайда
1/1
Реклама. Продолжение ниже
8

Слайд 8

Логическая формула – формула, содержащая лишь логические величины и знаки логических операций. Результатом вычисления логической формулы является ИСТИНА или ЛОЖЬ Последовательность выполнения операций в логических формулах определяется старшенством операций. В порядке убывания старшенства логические операции расположены так: отрицание, конъюнкция, дизъюнкция. Кроме того, на порядок выполнения операций влияют скобки, которые можно использовать в логических формулах. Например: (A&B)v( Ā&B)v(Ā& В )

Изображение слайда
1/1
9

Слайд 9

Пример 1: Вычислить значение логической формулы ¬ X & Y v X & Z Если логические переменные имеют следующие значения: Х=ЛОЖЬ, Y = ИСТИНА, Z= ИСТИНА. Решение: Отметим цифрами сверху порядок выполнения операций в формуле: Используя таблицу истинности, вычислим формулу по шагам: ¬ ЛОЖЬ = ИСТИНА; ИСТИНА & ИСТИНА = ИСТИНА; ЛОЖЬ & ИСТИНА = ЛОЖЬ; ИСТИНА v ЛОЖЬ = ИСТИНА. ¬ X & Y v X & Z 1 2 3 4

Изображение слайда
1/1
10

Слайд 10: Пример 2

Определите значение логического выражения: не ( X > Z ) и не ( X = Y ), если: 1) X = 3, Y = 5, Z = 2; 2) X = 0, Y = 1, Z = 19; 3) X = 5, Y = 0, Z = -8; 4) X = 9, Y = -9, Z = 9.

Изображение слайда
1/1
11

Слайд 11

Логические функции на области числовых значений Алгебра чисел пересекаются с алгеброй логики в тех случаях, когда приходится проверять принадлежность значений алгебраических выражений некоторому множеству. Например, принадлежность значения числовой переменной Х множеству положительных чисел выражается через высказывание : «Х больше нуля». Символически это записывается так: Х > 0. В алгебре такое выражение называется неравенством, а в логике – отношением. Отношение Х >0 может быть истинным или ложным. Если Х положительная величина, то оно истинно, если отрицательная, то ложно. В общем виде отношение имеет следующую структуру: < выражение 1 > < знак отношения > < выражение2 > Знаки отношений: = ; <> ; >; <; >= ; <=.

Изображение слайда
1/1
12

Слайд 12

Отношение – это простое высказывание, а значит логическая величина. Оно может быть как постоянной: 5 >0 – всегда ИСТИНА, 3≠6:2 –всегда ЛОЖЬ; так и переменной: a<b,x+1=c-d. Например: F(x)=(x>0) или P( x,y ) =( x<y). Аргументы определены на бесконечном множестве действительных чисел, а значение функции – на множестве, состоящем из двух логических величин: ИСТИНА, ЛОЖЬ. Логические величины от числовых аргументов называют ПРЕДИКАТ. Предикаты могут быть как простыми логическими функциями, не содержащими логических операций, так и сложными, содержащими логические операции. Отношение – можно рассматривать как логическую функцию от числовых аргументов.

Изображение слайда
1/1
13

Слайд 13

Пример: Записать предикат(логическую функцию) от двух вещественных аргументов X и Y, который будет принимать значение ИСТИНА, если точка на координатной плоскости с координатами X и Y лежит внутри единичной окружности с центром в начале координат. 1 1 -1 0 Y X Решение: Из геометрических соображений понятно, что для всех точек, лежащих внутри единичной окружности, будет истинным значение следующей логической функции: F(X,Y)=(X 2 +Y 2 <1) Для значений координат точек, лежащих на окружности и вне её, значение функции Y будет ложным.

Изображение слайда
1/1
14

Слайд 14

Логические выражения на Паскале Логические константы: true ( истина), false (ложь). Логические переменные: описываются с типом Boolean. Операции отношения: осуществляют сравнение двух операндов и определяют, истинно или ложно соответствующее отношение между ними. Знаки операций отношения Логические операции: not – отрицание; and – логическое умножение(конъюнкция); or – логическое сложение (дизъюнкция); xor – исключение ИЛИ. Таблица истинности для этих операций( T- true, F-false) = ; <> ; >; <; >= ; <=. A B not A A and B A or B A xor B T T F T T F T F F F T T F T T F T T F F T F F F

Изображение слайда
1/1
Реклама. Продолжение ниже
15

Слайд 15

Логическое выражение может состоять из логических констант и переменных, отношений, логических операций. Логическое выражение принимает значение true или false. Например, логическая формула На Паскале запишется в виде следующего логического выражения: not X and Y or X and Z, где X,Y,Z –переменные Boolean. Логические переменные располагаются в следующем порядке по убыванию старшенства (приоритета): not and or, xor. Операции отношения имеют самый низкий приоритет. Поэтому если операндами логической операции являются отношения, то их следует заключать в круглые скобки. Например, математическому неравенству 1≤ Х ≤ 50 соответствует следующее логическое выражение: (1<=X) and (X<=50) ¬ X & Y v X & Z

Изображение слайда
1/1
16

Слайд 16

Логическая функция odd(x) – логическая функция определения четности аргумента, равна true, если x- нечетное, и равна false, если x- четное; trunc (x) – целочисленная функция от вещественного аргумента, возвращающая ближайшее целое число, не превышающее x по модулю.

Изображение слайда
1/1
17

Слайд 17

- Для правильной записи сложного логического выражения( предиката) нужно учитывать относительные предикаты арифметических, логических операций и операций отношений, поскольку все они могут присутствовать в логическом выражении. По убыванию приоритета операции располагаются в следующем порядке: Арифметические операции: (минус унарный) *, / +, - 2. Логические операции: not and or, xor 3. Операции отношения: =, <>, >,<, >=, <=

Изображение слайда
Изображение для работы со слайдом
1/2
18

Последний слайд презентации: Логические величины, операции, выражения. (10 класс)

Спасибо за внимание!

Изображение слайда
Изображение для работы со слайдом
1/2
Реклама. Продолжение ниже