Презентация на тему: L–13 Simple Harmonic Motion (SHM)

Реклама. Продолжение ниже
L–13 Simple Harmonic Motion (SHM)
Project announcement
1. Periodic motion: Simple Harmonic Motion
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
Proof 2 : Vertical Motion of a Spring-Mass System
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
L–13 Simple Harmonic Motion (SHM)
Example 1:
Example 2
L–13 Simple Harmonic Motion (SHM)
2. Simple Harmonic and Uniform Circular Motion
L–13 Simple Harmonic Motion (SHM)
READING : - Adams and Allday, 3.35, 3.36 - Serway, Chapter 13, Sections 13.1-13.4
L–13 Simple Harmonic Motion (SHM)
1/20
Средняя оценка: 5.0/5 (всего оценок: 72)
Код скопирован в буфер обмена
Скачать (764 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации: L–13 Simple Harmonic Motion (SHM)

LECTURE OUTLINE Periodic Motion: Simple Harmonic Motion Motion of a Spring-Mass System The Simple Pendulum Mathematical Description of Simple Harmonic Oscillation L–13 Simple Harmonic Motion (SHM) 1

Изображение слайда
1/1
2

Слайд 2: Project announcement

Each group is required to take distance v/s voltage readings (10 readings ) on your wind generator and plot a graph. This is the last week to work on project.

Изображение слайда
1/1
3

Слайд 3: 1. Periodic motion: Simple Harmonic Motion

SHM occurs when the net force is proportional to the displacement from the equilibrium point and is always directed toward the equilibrium point. i.e. it obeys Hooke’s law where F is the restoring force, x is the displacement and k is the spring constant (or force constant) 3

Изображение слайда
1/1
4

Слайд 4

Examples of SHM - Vibrational motion of atoms and molecules in solids (amplitude depends on temperature). - Simple and Compound pendula; Not every periodic motion is SHM. However most periodic motions approximate to SHM for small displacements. Also assume no friction etc. - Mass on the end of a horizontal or vertical spring; 4

Изображение слайда
1/1
5

Слайд 5

A mass on a frictionless surface is attached to the end of a horizontal spring as shown. The mass is pulled to one side and then released (or compressed to the other side and then released). Proof 1: Show that the subsequent motion is SHM. The equation of motion is: F = -kx = ma x (where k is the force constant of the spring). And so it is SHM. 2. Horizontal motion of a spring-mass system 5

Изображение слайда
Изображение для работы со слайдом
1/2
6

Слайд 6: Proof 2 : Vertical Motion of a Spring-Mass System

Prove that a mass attached to the end of an ideal vertical spring undergoes SHM when displaced from the equilibrium position. 6

Изображение слайда
Изображение для работы со слайдом
1/2
7

Слайд 7

3. The Simple Pendulum A simple pendulum also exhibits periodic motion The motion occurs in the vertical plane and is driven by gravitational force Proof 3 : Prove that, for small angles, the motion of a pendulum approximates SHM. 7

Изображение слайда
Изображение для работы со слайдом
1/2
Реклама. Продолжение ниже
8

Слайд 8

Basic equation of motion for SHM It is often convenient to write this as: where This is a differential equation: ( ω is the angular frequency) 4. Mathematical Description of Simple Harmonic Oscillation 8

Изображение слайда
1/1
9

Слайд 9

Proof 4: Prove that general solution for the equation has a form: Constants A and B depend on the initial conditions i.e. value of x and v when t = 0. 9 The another possible form is φ – initial phase

Изображение слайда
Изображение для работы со слайдом
1/2
10

Слайд 10

10 10 Initial conditions at t = 0 are: x (0) = 0 v (0) = v max The graphs of velocity and acceleration are shifted one-quarter cycle to the right compared to the graph above it, where x (0) = 0 Graph of x(t) = A sin( ω t)

Изображение слайда
Изображение для работы со слайдом
1/2
11

Слайд 11

11 11 Initial conditions at t =0 : x (0) = A v (0) = 0 Graph of x(t)=A cos( ω t) It is similar to expression x(t)=A sin ( ω t+ π /2) with initial phase of π /2

Изображение слайда
Изображение для работы со слайдом
1/2
12

Слайд 12

Physical meaning of this solution At t = 0 then x = 0, so the motion “starts” when the mass is passing through the equilibrium position x varies sinusoidally and the motion repeats with period and frequency ω is the angular frequency A is called the amplitude and is the maximum displacement. The maximum speed is v max = A ω The maximum acceleration is a max = A ω 2 12

Изображение слайда
1/1
13

Слайд 13

For a spring Then And For a simple pendulum Then And 13

Изображение слайда
Изображение для работы со слайдом
1/2
14

Слайд 14: Example 1:

A mass of 100 g is on a horizontal spring of constant k = 10.0 Nm -1. It is initially displaced by 0.100 m, and then released so that it oscillates. Assume friction is negligible. A) Find the amplitude, the period and the frequency of the SHM; B) Write down expressions for displacement, velocity and acceleration of SHM as functions of time. 14

Изображение слайда
1/1
Реклама. Продолжение ниже
15

Слайд 15: Example 2

An object in SHM has an amplitude A = 0.200 cm and a frequency f = 20.0 Hz. Write down expression for displacement as a function of time taking equilibrium point as initial position (x=0 at t=0); B) Find the velocity and acceleration of an object at x = 0; x = A and x = - A. 15

Изображение слайда
1/1
16

Слайд 16

V elocity v and acceleration a in terms of displacement acceleration velocity Find v 2 in terms of displacement, not time 16

Изображение слайда
1/1
17

Слайд 17: 2. Simple Harmonic and Uniform Circular Motion

There is a striking similarity between SHM and uniform circular motion 17

Изображение слайда
Изображение для работы со слайдом
1/2
18

Слайд 18

Animations for Simple and physical pendulum See animations at: http://wps.aw.com/aw_young_physics_11/13/3510/898588.cw/nav_and_content/index.html Animation 9.10 : Shows independence of period on mass, and dependence on length Animation 9.12 : A comparison between a simple and a uniform compound pendulum of same mass m. Do they have the same period? If no, which one do you expect to have the shortest period? 18

Изображение слайда
1/1
19

Слайд 19: READING : - Adams and Allday, 3.35, 3.36 - Serway, Chapter 13, Sections 13.1-13.4

LECTURE CHECK LIST Understand what is meant by a differential equation (DE); Be able to solve the DE for SHM by using a general solution; Be able to solve problems using the equations of Simple Harmonic Motion. 19

Изображение слайда
1/1
20

Последний слайд презентации: L–13 Simple Harmonic Motion (SHM)

ANSWERS Example 1 0.100 m; 0.628 s; 1.59 Hz; x=(0.100 m) cos( 10.0t) v=-(1.00 m/s) sin( 10.0t ) a=-(10.0 m/s 2 ) cos(10.0t) Example 2 x=(0.200cm)sin(12.6t); 0.251 m/s, 0 and 0; 0, -31.8 m/s² and 31.8 m/s² 20

Изображение слайда
1/1
Реклама. Продолжение ниже