Презентация на тему: ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
Анализ электронной схемы
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
1/26
Средняя оценка: 4.0/5 (всего оценок: 66)
Код скопирован в буфер обмена
Скачать (442 Кб)
1

Первый слайд презентации

ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Изображение слайда
2

Слайд 2

Ключевые слова алгебра логики высказывание логическая операция конъюнкция дизъюнкция отрицание логическое выражение таблица истинности законы логики

Изображение слайда
3

Слайд 3

Клод Шеннон (1916-2001). Его исследования позволили применить алгебру логики в вычислительной технике Л огик а Аристотель (384-322 до н.э.). Основоположник формальной логики (понятие, суждение, умозаключение). Джордж Буль (1815-1864). Создал новую область науки - Математическую логику (Булеву алгебру или Алгебру высказываний).

Изображение слайда
4

Слайд 4

Алгебра - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами – числами, многочленами, векторами и др. Алгебра

Изображение слайда
5

Слайд 5

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное. В русском языке высказывания выражаются повествовательными предложениями: Земля вращается вокруг Солнца. Москва - столица. Побудительные и вопросительные предложения высказываниями не являются. Без стука не входить! Откройте учебники. Ты выучил стихотворение? Высказывание Но не всякое повествовательное предложение является высказыванием: Это высказывание ложное.

Изображение слайда
6

Слайд 6

Высказывание или нет? Зимой идет дождь. Снегири живут в Крыму. Кто к нам пришел? У треугольника 5 сторон. Как пройти в библиотеку? Переведите число в десятичную систему. Запишите домашнее задание

Изображение слайда
7

Слайд 7

Алгебра логики определяет правила записи, вычисления значений, упрощения и преобразования высказываний. В алгебре логики высказывания обозначают буквами и называют логическими переменными. Если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей ( А = 1 ), а если ложно - нулём ( В = 0 ). 0 и 1 называются логическими значениями. Алгебра логики

Изображение слайда
8

Слайд 8

Простые и сложные высказывания Высказывания бывают простые и сложные. Высказывание называется простым, если никакая его часть сама не является высказыванием. Сложные (составные) высказывания строятся из простых с помощью логических операций. Название логической операции Логическая связка Конъюнкция «и»; «а»; «но»; «хотя» Дизъюнкция «или» Инверсия «не»; «неверно, что»

Изображение слайда
9

Слайд 9

Конъюнкция - логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны. Другое название: логическое умножение. Обозначения: , , &, И. А В А & В 0 0 0 0 1 0 1 0 0 1 1 1 Логические операции Таблица истинности: Графическое представление A B А & В

Изображение слайда
10

Слайд 10

Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны. Другое название: логическое сложение. Обозначения: V, |, ИЛИ, +. А В А V В 0 0 0 0 1 1 1 0 1 1 1 1 Логические операции Таблица истинности: Графическое представление A B А V В

Изображение слайда
11

Слайд 11

Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. Другое название: логическое отрицание. Обозначения: НЕ, ¬, ¯. А Ā 0 1 1 0 Логические операции имеют следующий приоритет: инверсия, конъюнкция, дизъюнкция. Логические операции Таблица истинности: Графическое представление A Ā

Изображение слайда
12

Слайд 12

Пусть А = «На Web-странице встречается слово "крейсер"», В = «На Web-странице встречается слово "линкор"». В некотором сегменте сети Интернет 5000000 Web-страниц. В нём высказывание А истинно для 4800 страниц, высказывание В - для 4500 страниц, а высказывание А V В - для 7000 страниц. Для какого количества Web-страниц в этом случае будут истинны следующие выражения и высказывание? а) НЕ ( А ИЛИ В ); б) А & B ; в) На Web-странице встречается слово "крейсер" И НЕ встречается слово "линкор". Решаем задачу

Изображение слайда
13

Слайд 13

5000000 – 7000 = 4 993 000 Web -страниц НЕ ( А ИЛИ В ) A = 4800, B = 4500. 4800 + 4500 = 9300 4800 – 2300 = 2500 Web -страниц Представим условие задачи графически: На 2500 Web-страницах встречается слово "крейсер" И НЕ встречается слово "линкор". 5 000 000 7 000 НЕ ( А ИЛИ В ) Сегмент Web- страниц A B A&B 9300 – 7000 = 2300 Web -страниц A&B A И B А ИЛИ В

Изображение слайда
14

Слайд 14

Построение таблиц истинности для логических выражений подсчитать n - число переменных в выражении подсчитать общее число логических операций в выражении установить последовательность выполнения логических операций определить число столбцов в таблице заполнить шапку таблицы, включив в неё переменные и операции определить число строк в таблице без шапки: m =2 n выписать наборы входных переменных провести заполнение таблицы по столбцам, выполняя логические операции в соответствии с установленной последовательностью

Изображение слайда
15

Слайд 15

A B A&B A V A&B 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 А V A & B n = 2, m = 2 2 = 4. Приоритет операций: &, V Пример построения таблицы истинности

Изображение слайда
16

Слайд 16

Свойства логических операций Законы алгебры-логики A & B = B & A A V B = B V A A&(B V C)= (A&B) V (A&C) A V (B&C) = (A V B)&(A V C) (A & B) & C = A & ( B & C) (A V B) V C =A V ( B V C) Переместительный Сочетательный Распределительный Закон двойного отрицания Ā = A A & Ā = 0 A V Ā = 1 A & 0=0; A &1 = A A V 0 = A; A V 1 = 1 A & A = A A V A = A Закон исключения третьего Закон повторения Законы операций с 0 и 1 Законы общей инверсии A & B = Ā V B A V B = Ā & B

Изображение слайда
17

Слайд 17

A B C B&C A v (B & C) A v B A v C (A v B) & (A v C) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Распределительный закон для логического сложения: A v (B & C) = (A v B) & (A v C). Доказательство закона Умножаем В на С и выводим результат. 0 0 0 0 0 0 1 1 Складываем А и В и выводим результат. 0 0 0 1 1 1 1 1 Складываем А и ( В & С ) и выводим результат. 0 0 1 1 1 1 1 1 Складываем А и C и выводим результат. 0 0 1 1 1 1 1 1 Умножаем ( А v B ) на ( A v C ) и выводим результат. 0 0 0 1 1 1 1 1 Равенство выделенных столбцов доказывает распределительный закон.

Изображение слайда
18

Слайд 18

Задача. Коля, Вася и Серёжа гостили летом у бабушки. Однажды один из мальчиков нечаянно разбил любимую бабушкину вазу. Решение логических задач На вопрос, кто разбил вазу, они дали такие ответы: Серёжа : 1) Я не разбивал. 2) Вася не разбивал. Вася : 3) Серёжа не разбивал. 4) Вазу разбил Коля. Коля: 5) Я не разбивал. 6) Вазу разбил Серёжа. Бабушка знала, что один из её внуков (правдивый), оба раза сказал правду; второй (шутник) оба раза сказал неправду; третий (хитрец) один раз сказал правду, а другой раз - неправду. Назовите имена правдивого, шутника и хитреца. Кто из внуков разбил вазу?

Изображение слайда
19

Слайд 19

K B C Утверждение Серёжи Утверждение Васи Утверждение Коли K C 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 С В К С Решение. Пусть К =«Коля разбил вазу», В =«Вася разбил вазу», С =«Серёжа разбил вазу». Представим в таблице истинности высказывания каждого мальчика. Так как ваза разбита одним внуком, составим не всю таблицу, а только её фрагмент, содержащий наборы входных переменных: 001, 010, 100. Исходя из того, что знает о внуках бабушка, следует искать в таблице строки, содержащие в каком-либо порядке три комбинации значений: 00, 11, 01 (или 10). Это первая строка. Вазу разбил Серёжа, он - хитрец. Шутником оказался Вася. Имя правдивого внука - Коля.

Изображение слайда
20

Слайд 20

Логический элемент – устройство, которое после обработки двоичных сигналов выдаёт значение одной из логических операций. & А В И ( конъюнктор ) 1 А В ИЛИ ( дизъюнктор ) НЕ (инвертор) А Логические элементы

Изображение слайда
21

Слайд 21: Анализ электронной схемы

Какой сигнал должен быть на выходе при каждом возможном наборе сигналов на входах? Анализ электронной схемы Решение. Все возможные комбинации сигналов на входах А и В внесём в таблицу истинности. Проследим преобразование каждой пары сигналов при прохождении их через логические элементы и запишем полученный результат в таблицу. Заполненная таблица истинности полностью описывает рассматриваемую электронную схему. А В & F A B F 0 0 0 0 1 0 1 0 1 1 1 0 В инвертор поступает сигнал от входа В. В конъюнктор поступают сигналы от входа А и от инвертора. Таким образом, F = A & B.

Изображение слайда
22

Слайд 22

Высказывание — это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное. Основные логические операции, определённые над высказываниями: инверсия, конъюнкция, дизъюнкция. Название логической операции Логическая связка Обозначение Инверсия «не, «неверно, что» ¬, ─ Конъюнкция «и», «а», «но», «хотя» & Дизъюнкция «или» V Таблицы истинности для основных логических операций: А Ā 0 1 1 0 A B A & B A V B 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 При вычислении логических выражений сначала выполняются действия в скобках. Приоритет выполнения логических операций: ¬, &, V. Самое главное

Изображение слайда
23

Слайд 23

Вопросы и задания Объясните, почему следующие предложения не являются высказываниями. 1) Какого цвета этот дом? 2) Число Х не превосходит единицы. 3) 4 Х +3. 4) Посмотрите в окно. 5) Пейте томатный сок! 6) Эта тема скучна. 7) Рикки Мартин - самый популярный певец. 8) Вы были в театре? Приведите по одному примеру истинных и ложных высказываний из биологии, географии, информатики, истории, математики, литературы. В следующих высказываниях выделите простые высказывания, обозначив каждое из них буквой. Запишите с помощью букв и знаков логических операций каждое составное высказывание. 1) Число 376 чётное и трёхзначное. 2) Зимой дети катаются на коньках или на лыжах. 3) Новый год мы встретим на даче или на Красной площади. 4) Неверно, что Солнце движется вокруг Земли. 5) Земля имеет форму шара, который из космоса кажется голубым. 6) На уроке математики старшеклассники отвечали на вопросы учителя, а также писали самостоятельную работу. Постройте отрицания следующих высказываний. 1) Сегодня в театре идёт опера «Евгений Онегин». 2) Каждый охотник желает знать, где сидит фазан. 3) Число 1 есть простое число. 4) Натуральные числа, оканчивающиеся цифрой 0, не являются простыми числами. 5) Неверно, что число 3 не является делителем числа 198. 6) Коля решил все задания контрольной работы. 7) Во всякой школе некоторые ученики интересуются спортом. 8) Некоторые млекопитающие не живут на суше. Пусть А = «Ане нравятся уроки математики», а В = «Ане нравятся уроки химии». Выразите следующие формулы на обычном языке: Выясните, какой сигнал должен быть на выходе электронной схемы при каждом возможном наборе сигналов на входах. Составьте таблицу работы схемы. Каким логическим выражением описывается схема? 1 F А В

Изображение слайда
24

Слайд 24

Вопросы и задания Разбирается дело Джона, Брауна и Смита. Известно, что один из них нашёл и утаил клад. На следствии каждый из подозреваемых сделал два заявления: Смит : «Я не делал этого. Браун сделал это». Джон : «Браун не виновен. Смит сделал это». Браун : «Я не делал этого. Джон не делал этого». Суд установил, что один из них дважды солгал, другой дважды сказал правду, третий один раз солгал, один раз сказал правду. Кто из подозреваемых должен быть оправдан? Алёша, Боря и Гриша нашли в земле старинный сосуд. Рассматривая удивительную находку, каждый высказал по два предположения: 1) Алеша : « Это сосуд греческий и изготовлен в V веке ». 2) Боря : « Это сосуд финикийский и изготовлен в III веке ». 3) Гриша : « Это сосуд не греческий и изготовлен в IV веке ». Учитель истории сказал ребятам, что каждый из них прав только в одном из двух предположений. Где и в каком веке изготовлен сосуд?

Изображение слайда
25

Слайд 25

Опорный конспект Инверсия Конъюнкция Дизъюнкция Высказывание – это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное. А Ā 0 1 1 0 A B A & B 0 0 0 0 1 0 1 0 0 1 1 1 A B A V B 0 0 0 0 1 1 1 0 1 1 1 1 Приоритет выполнения логических операций: ¬, &, V. Основные логические операции

Изображение слайда
26

Последний слайд презентации: ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Электронные образовательные ресурсы http://school-collection.edu.ru/catalog/res/9e997f40-f285-4369-aa7d-88b892beca45/?interface=catalog&class=51&subject=19 – Элементарные логические операции

Изображение слайда