Презентация на тему: Chapter 32

Реклама. Продолжение ниже
Chapter 32
Animals Overview
Chapter 32
Animal Structure and Specialization
Reproduction and Development
Chapter 32
Chapter 32
The history of animals spans more than half a billion years
Chapter 32
Chapter 32
Paleozoic Era (542–251 Million Years Ago)
Chapter 32
Mesozoic Era (251–65.5 Million Years Ago)
Cenozoic Era (65.5 Million Years Ago to the Present)
Animals can be characterized by “body plans”
Body Plan -- Symmetry
Chapter 32
Body Plan -- Tissues
Chapter 32
Body Cavities Most triploblastic animals possess a body cavity.
Chapter 32
Cleavage: protostome or deuterostome development
Chapter 32
New views of animal phylogeny are emerging from molecular data
Chapter 32
Chapter 32
Points of Agreement
Progress in Resolving Bilaterian Relationships
Chapter 32
Chapter 32
Chapter 32
Chapter 32
You should now be able to:
1/33
Средняя оценка: 5.0/5 (всего оценок: 82)
Код скопирован в буфер обмена
Скачать (4216 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации: Chapter 32

An Introduction to Animal Diversity

Изображение слайда
1/1
2

Слайд 2: Animals Overview

Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers. There are exceptions to nearly every criterion for distinguishing animals from other life-forms. 1.3 million living species of animals have been identified.

Изображение слайда
1/1
3

Слайд 3

Which of these organisms are animals?

Изображение слайда
Изображение для работы со слайдом
1/2
4

Слайд 4: Animal Structure and Specialization

Nutritional Mode : Animals are heterotrophs that ingest their food. Animals are multicellular eukaryotes. Their cells lack cell walls. Their bodies are held together by structural proteins such as collagen. Nervous tissue and muscle tissue are unique to animals.

Изображение слайда
1/1
5

Слайд 5: Reproduction and Development

Most animals reproduce sexually, with the diploid stage usually dominating the life cycle. After fertilization, the zygote undergoes rapid cell division called cleavage. Cleavage leads to formation of a blastula. The blastula undergoes gastrulation, forming a gastrula with different layers of embryonic tissues.

Изображение слайда
1/1
6

Слайд 6

Animal Early Embryonic Development Zygote Cleavage Eight-cell stage Blastula Cross section of blastula Blastocoel Gastrulation Blastopore Gastrula Archenteron Ectoderm Endoderm Blastocoel

Изображение слайда
Изображение для работы со слайдом
1/2
7

Слайд 7

Many animals have at least one larval stage. A larva is sexually immature and morphologically distinct from the adult; it eventually undergoes metamorphosis. All animals, and only animals, have Hox genes that regulate the development of body form. Although the Hox family of genes has been highly conserved, it can produce a wide diversity of animal morphology.

Изображение слайда
1/1
Реклама. Продолжение ниже
8

Слайд 8: The history of animals spans more than half a billion years

The animal kingdom includes a great diversity of living species and an even greater diversity of extinct ones. The common ancestor of living animals may have lived between 675 and 875 million years ago. This ancestor may have resembled modern choanoflagellates, protists that are the closest living relatives of animals.

Изображение слайда
1/1
9

Слайд 9

Three lines of evidence that choanoflagellates protists are closely related to animals OTHER EUKARYOTES Choanoflagellates Sponges Other animals Animals Individual choanoflagellate Collar cell (choanocyte)

Изображение слайда
Изображение для работы со слайдом
1/2
10

Слайд 10

Early members of the animal fossil record include the Ediacaran biota, which dates from 565 to 550 million years ago (a) Mawsonites spriggi (b) Spriggina floundersi 1.5 cm 0.4 cm

Изображение слайда
Изображение для работы со слайдом
1/2
11

Слайд 11: Paleozoic Era (542–251 Million Years Ago)

The Cambrian explosion (535 to 525 million years ago) marks the earliest fossil appearance of many major groups of living animals. There are several hypotheses regarding the cause of the Cambrian explosion New predator-prey relationships A rise in atmospheric oxygen The evolution of the Hox gene complex.

Изображение слайда
1/1
12

Слайд 12

A Cambrian seascape

Изображение слайда
Изображение для работы со слайдом
1/2
13

Слайд 13: Mesozoic Era (251–65.5 Million Years Ago)

Animal diversity continued to increase through the Paleozoic, but was punctuated by mass extinctions. Animals began to make an impact on land by 460 million years ago. Vertebrates made the transition to land around 360 million years ago. Coral reefs emerged, becoming important marine ecological niches for other organisms. During the Mesozoic era, dinosaurs were the dominant terrestrial vertebrates. The first mammals emerged.

Изображение слайда
1/1
14

Слайд 14: Cenozoic Era (65.5 Million Years Ago to the Present)

The beginning of the Cenozoic era followed mass extinctions of both terrestrial and marine animals. These extinctions included the large, nonflying dinosaurs and the marine reptiles. Modern mammal orders and insects diversified during the Cenozoic.

Изображение слайда
1/1
Реклама. Продолжение ниже
15

Слайд 15: Animals can be characterized by “body plans”

Zoologists sometimes categorize animals according to a body plan, a set of morphological and developmental traits. A grade is a group whose members share key biological features. A grade is not necessarily a clade, or monophyletic group.

Изображение слайда
1/1
16

Слайд 16: Body Plan -- Symmetry

Animals can be categorized according to the symmetry of their bodies, or lack of it. Some animals have radial symmetry. Two-sided symmetry is called bilateral symmetry. Animals with bilateral symmetry have: A dorsal (top) side and a ventral (bottom) side A right and left side Anterior (head) and posterior (tail) ends Cephalization, the development of a head. ( Brain …)

Изображение слайда
1/1
17

Слайд 17

Animal Body Symmetry (a) Radial symmetry (b) Bilateral symmetry

Изображение слайда
Изображение для работы со слайдом
1/2
18

Слайд 18: Body Plan -- Tissues

Animal body plans also vary according to the organization of the animal’s tissues. Tissues are collections of specialized cells isolated from other tissues by membranous layers. During development, three germ layers give rise to the tissues and organs of the animal embryo.

Изображение слайда
1/1
19

Слайд 19

Ectoderm is the germ layer covering the embryo’s surface. Endoderm is the innermost germ layer and lines the developing digestive tube, called the archenteron. Diploblastic animals have ectoderm and endoderm. Triploblastic animals also have a middle mesoderm layer; these include all bilaterians. Embryonic Germ Layers

Изображение слайда
1/1
20

Слайд 20: Body Cavities Most triploblastic animals possess a body cavity

A true body cavity is called a coelom and is derived from mesoderm. Coelomates are animals that possess a true coelom. A pseudocoelom is a body cavity derived from the mesoderm and endoderm. Triploblastic animals that possess a pseudocoelom are called pseudocoelomates. Triploblastic animals that lack a body cavity are called acoelomates.

Изображение слайда
1/1
21

Слайд 21

Triploblastic Animals Body Cavities Coelom Body covering (from ectoderm) Digestive tract (from endoderm) Tissue layer lining coelom and suspending internal organs (from mesoderm) (a) Coelomate - true body cavity Body covering (from ectoderm) Pseudocoelom Digestive tract (from endoderm) Muscle layer (from mesoderm) (b) Pseudocoelomate Body covering (from ectoderm) Tissue- filled region (from mesoderm) Wall of digestive cavity (from endoderm) (c) Acoelomate - lack a body cavity

Изображение слайда
Изображение для работы со слайдом
1/2
22

Слайд 22: Cleavage: protostome or deuterostome development

In protostome development, cleavage is spiral and determinate. In deuterostome development, cleavage is radial and indeterminate. With indeterminate cleavage, each cell in the early stages of cleavage retains the capacity to develop into a complete embryo. Indeterminate cleavage makes possible identical twins, and embryonic stem cells.

Изображение слайда
1/1
23

Слайд 23

Protostome Development molluscs, annelids Deuterostome Development echinoderm, chordates Eight-cell stage Eight-cell stage Spiral and determinate Radial and indeterminate Coelom Archenteron (a) Cleavage (b) Coelom formation Coelom Key Ectoderm Mesoderm Endoderm Mesoderm Mesoderm Blastopore Blastopore Solid masses of mesoderm split and form coelom. Folds of archenteron form coelom. Anus Mouth Digestive tube Mouth Anus Mouth develops from blastopore. Anus develops from blastopore. (c) Fate of the blastopore

Изображение слайда
Изображение для работы со слайдом
1/2
24

Слайд 24: New views of animal phylogeny are emerging from molecular data

Zoologists recognize about three dozen animal phyla. Current debate in animal systematics has led to the development of two phylogenetic hypotheses, but others exist as well. One hypothesis of animal phylogeny is based mainly on morphological and developmental comparisons. Another hypothesis is based mainly on molecular data.

Изображение слайда
1/1
25

Слайд 25

A view of animal phylogeny based mainly on morphological and developmental comparisons ANCESTRAL COLONIAL FLAGELLATE Metazoa Eumetazoa “Porifera” Bilateria Deuterostomia Protostomia Cnidaria Ctenophora Ectoprocta Brachiopoda Echinodermata Chordata Platyhelminthes Rotifera Mollusca Annelida Arthropoda Nematoda

Изображение слайда
Изображение для работы со слайдом
1/2
26

Слайд 26

A view of animal phylogeny based mainly on molecular data Silicea ANCESTRAL COLONIAL FLAGELLATE Metazoa Eumetazoa “Porifera” Bilateria Deuterostomia Lophotrochozoa Ecdysozoa Calcarea Ctenophora Cnidaria Acoela Echinodermata Chordata Platyhelminthes Rotifera Ectoprocta Brachiopoda Mollusca Annelida Nematoda Arthropoda

Изображение слайда
Изображение для работы со слайдом
1/2
27

Слайд 27: Points of Agreement

All animals share a common ancestor. Sponges are basal animals. Eumetazoa is a clade of animals - eumetazoans with true tissues. Most animal phyla belong to the clade Bilateria, and are called bilaterians. Chordates and some other phyla belong to the clade Deuterostomia.

Изображение слайда
1/1
28

Слайд 28: Progress in Resolving Bilaterian Relationships

The morphology-based tree divides bilaterians into two clades: deuterostomes and protostomes. In contrast, recent molecular studies indicate three bilaterian clades: Deuterostomia, Ecdysozoa, and Lophotrochozoa. Ecdysozoans shed their exoskeletons through a process called ecdysis.

Изображение слайда
1/1
29

Слайд 29

Ecdysis - Shedding of Exoskeleton

Изображение слайда
Изображение для работы со слайдом
1/2
30

Слайд 30

Some lophotrochozoans have a feeding structure called a lophophore. Other phyla go through a distinct developmental stage called the trochophore larva.

Изображение слайда
1/1
31

Слайд 31

Lophotrochozoans Characteristics Lophophore Apical tuft of cilia Mouth (a) An ectoproct (b) Structure of a trochophore larva 100 µm Anus

Изображение слайда
Изображение для работы со слайдом
1/2
32

Слайд 32

Animal Phylogeny Common ancestor of all animals True tissues Sponges (basal animals) Ctenophora Cnidaria Acoela (basal bilaterians) Deuterostomia Lophotrochozoa Ecdysozoa Metazoa Eumetazoa Bilateria (most animals) Bilateral summetry Three germ layers

Изображение слайда
Изображение для работы со слайдом
1/2
33

Последний слайд презентации: Chapter 32: You should now be able to:

List the characteristics that combine to define animals. Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras. Distinguish between the following pairs or sets of terms: radial and bilateral symmetry; diploblastic and triploblastic; spiral and radial cleavage; determinate and indeterminate cleavage; acoelomate, pseudocoelomate, and coelomate Compare the developmental differences between protostomes and deuterostomes.

Изображение слайда
1/1
Реклама. Продолжение ниже