Презентация на тему: АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:

Реклама. Продолжение ниже
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:
1/31
Средняя оценка: 5.0/5 (всего оценок: 35)
Код скопирован в буфер обмена
Скачать (723 Кб)
Реклама. Продолжение ниже
1

Первый слайд презентации

АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор: Стерник Сергей Геннадьевич, профессор Департамента корпоративных финансов и корпоративного управления Финуниверситета при Правительстве РФ Тел./ e-mail : 79035497765 @yandex.ru

Изображение слайда
1/1
2

Слайд 2

Анализ рынка недвижимости представляет собой самостоятельный вид деятельности, имеющий целью обеспечение объективной информацией лиц, принимающих решения о проведении тех или иных операций с недвижимостью. Объектом анализа является рынок недвижимости как сложная саморегулируемая и управляемая социально-экономическая система. Предметом анализа являются процессы, свойства и закономерности функционирования рынка. Целью анализа является определение состояния и перспектив развития рынка, текущего и прогнозируемого уровня показателей (индикаторов) рынка, оценка влияния вариантов управленческих решений на изменение индикаторов. Методы анализа, содержание этапов анализа разделяются на две группы: общий (универсальный) анализ и специализированный анализ.

Изображение слайда
1/1
3

Слайд 3

Цели аналитической деятельности Отраслевой экономический анализ Анализ рынка Информирование СМИ и потребителей ( PR -деятельность) Инвестиционный анализ и консалтинг Оценочная деятельность Стратегический и оперативный менеджмент Маркетинг (промоушн и реклама) Постановка задачи Результаты

Изображение слайда
1/1
4

Слайд 4

Содержание общего (универсального) и специализированного анализа рынка недвижимости Общий АРН 1. Сбор и верификация данных, создание и наполнение АБД 2. Статистическая обработка данных 3. Аналитическое описание состояния РН 4. Углубленное исследование факторов ценообразования и закономерностей функционирования РН 5. Прогнозирование развития РН данные статистика аналитика исследования прогнозы К специали зированному АРН

Изображение слайда
1/1
5

Слайд 5

Содержание общего АРН Сбор и верификация данных, создание и наполнение АБД К этому этапу относятся следующие работы: 1) Сбор данных о строительстве объектов и предложении объектов/помещений на продажу (в аренду), о проведенных сделках. Источники данных - риэлторские базы данных (БД) агентств недвижимости, объединенных БД ассоциаций, мультилистинговые системы (МЛС), публикации на сайтах компаний, в СМИ, проектные декларации застройщиков и т.д. 2) Сбор данных о внешних макро- и мезоэкономических условиях функционирования рынка недвижимости. Источники данных - публикации Росстата, региональных и местных статорганов, ЦБ РФ, Минэкономразвития РФ, специализированных институтов макроэкономического анализа и т.д. 3) Сбор данных о развитии, а также планах и намерениях властей по развитию территории и отрасли. Источники данных - публикации Росстата, региональных и местных статорганов, федеральных, региональных и местных властей. 4) Построение аналитических баз данных (АБД), включая Реестры строящихся и существующих объектов, БД предложения, сделок. 5) Верификация данных.

Изображение слайда
1/1
6

Слайд 6

2. Статистическая обработка данных и построение дискретной пространственно-параметрической модели (ДППМ) состояния сегмента рынка в рассматриваемом периоде: 1) Расчленение выборки строящихся объектов, предложений, сделок на подгруппы (кластеры) в соответствии с принятой методикой классификации по местоположению (зонам), качеству (классам или типам), размеру, стадии строительства и другим признакам. 2) Статобработка каждой выборки. 3) Построение ДППМ и ее оптимизация. 3. Аналитическое описание состояния сегмента рынка 1) Описание (в текстовом и графическом виде) состояния показателей сегмента рынка в текущем периоде и накопленной динамики за предшествующие периоды. 2) Описание состояния внешних условий, влияющих на показатели сегмента рынка. 3) Качественный анализ влияния внешних факторов и выявление причин полученных изменений состояния рынка.

Изображение слайда
1/1
7

Слайд 7

4. Исследование факторов ценообразования и закономерностей функционирования РН: 1) Выявление закономерностей функционирования РН с учетом специфики состояния отечественной экономики и рынка по результатам статистического мониторинга. 2) Эконометрические исследования взаимодействия различных показателей РН и влияющих на них факторов. 3) Социологические исследования поведенческих закономерностей субъектов рынка. 4) Квалиметрические исследования показателей качества информационных объектов (зон местоположения по привлекательности для проживания, территорий по инвестиционной привлекательности, объектов недвижимости по качеству проекта) и их рейтинговая оценка. 5) Разработка методического обеспечения исследований РН. 5. Прогнозирование развития РН: 1) Выявление тенденций развития РН. 2) Разработка экспертных и расчетных прогнозов развития РН (долгосрочных, среднесрочных, краткосрочных). 3) Разработка и совершенствование математических моделей функционирования РН и методик прогнозирования.

Изображение слайда
1/1
Реклама. Продолжение ниже
8

Слайд 8

Содержание специализированного АРН Специализированный АРН включает работу аналитика по информационному обеспечению отдельных видов деятельности на РН, включая деятельность органов власти, бизнеса, смежных видов информационно-аналитической деятельности. Эта работа опирается на результаты Общего АРН, а также включает в себя специальные методы и результаты анализа рынка в интересах каждого из заказчиков АРН. Можно выделить 4 таких направления. Специализированный АРН 1. Информационное обеспечение инвестиционного анализа и синтеза девелоперских проектов 2. Информационное обеспечение смежных видов деятельности на РН (ИЖК, маркетинг, оценка) 3. Информационное обеспечение стратегического и оперативного менеджмента в компаниях 4. Информационное обеспечение деятельности органов власти по управлению и регулированию РН От общего АРН

Изображение слайда
1/1
9

Слайд 9

Свойства рынка, подлежащие анализу и прогнозированию динамики показателей (индикаторов): ценовая ситуация на рынке; объем строительства и ввода объектов; объем предложения объектов и помещений на продажу и в аренду; спрос во всех сегментах рынка; размер объектов и помещений; объем операций (натуральный оборот рынка, объем поглощения), емкость, денежный оборот; доходность сегментов рынка; ликвидность объектов (темп продаж, период экспозиции); доступность объектов для населения; портрет и предпочтения потребителей на рынке; состояние инфраструктуры рынка, его субъектов; состояние законодательной, нормативной, методической базы рынка.

Изображение слайда
1/1
10

Слайд 10

Важнейшая особенность рыночной экономики и рынка недвижимости – колебательный, цикличный характер протекающих процессов, то есть обязательное чередование подъемов и спадов, перемежающихся более или менее кратковременными периодами стабильности. Циклы экономики и рынка недвижимости представляют собой периодические движения (подъемы и спады) рынка, при этом полным циклом считается период от начала подъема рынка до начала его следующего подъема. Цикл рынка имеют разную периодичность – от трех-четырех до двадцати-тридцати лет. Все циклические процессы (колебания) на рынке недвижимости принято делить на флуктуации и тенденции (тренды). Флуктуации рынка недвижимости ( real estate fluctuations ) – это случайные краткосрочные изменения (колебания) цен и арендных ставок, обычно длящиеся от одного-двух дней до нескольких месяцев. В отличие от трендов, флуктуации обычно не являются следствием взаимодействия спроса и предложения. Их причиной являются внешние силы, действующие на рынок.

Изображение слайда
1/1
11

Слайд 11

Тенденции рынка недвижимости (real estate trends) – это среднесрочные и долгосрочные движения рынка под воздействием изменения предложения и, в первую очередь, спроса. Тенденции часто являются следствием изменения демографической ситуации (например, притока/оттока мигрантов), экономической ситуации в стране (рост доходов населения, приток капитала) и в регионе (появление новых производств или закрытие старых, особенно градообразующих). Тенденции развиваются медленно и в течение длительного времени. Их влияние на рынок недвижимости в краткосрочном периоде достаточно слабо, но в среднесрочной и долгосрочной перспективе тенденции могут привести к значительным изменениям на рынке. Изучение тенденций – основная задача анализа рынка недвижимости. Полный цикл рынка недвижимости можно условно разделить на 4 фазы: I – восстановление или оживление ( r ecovery): исследуемый показатель (объемы рынка, цены, ставки аренды и т.п.) растет, темпы роста увеличиваются; II – подъем или рост ( e xpansion): рост продолжается, но его темпы снижаются; III – перепроизводство ( o ver s upply): исследуемый показатель снижается, темпы снижения увеличиваются; IV – спад или рецессия ( recession ): снижение продолжается, его темп снижается.

Изображение слайда
1/1
12

Слайд 12

Цикличность рынка недвижимости Поскольку циклы любого показателя далеко не всегда представляют гармоники (синусоиды), в литературе применяются и другие формы отображения цикличности процессов рынка. Наиболее распространенный вариант – «колесо фазовых переходов». Его можно объяснить как «свертка синусоиды». При обратной развертке образуется «гребешковая кривая».

Изображение слайда
1/1
13

Слайд 13

Колесо фазовых переходов BOOM DOWN Recession Recovery Expansion Oversupply Москва, 2017

Изображение слайда
1/1
14

Слайд 14

Термин Term Определение Восстано вление (оживле ние) Reco very После периода спада или кризиса рынок стабилизируется, цены начинают восстанавливаться, а избыточные площади начинают поглощаться. Этот процесс продолжается, и процент незанятых площадей начинает приближаться к равновесному (нормальному) уровню, когда спрос равен предложению. Восстановление обычно происходит под воздействием одного из двух факторов. Внешний удар. Развитие вне системы рынка недвижимости может привести к восстановлению. Примерами являются изменение налоговой системы или война. Ход времени. Цикл рынка недвижимости входит в свою нормальную стадию. После периода спада или кризиса в течение нескольких месяцев или лет новое строительство может вестись очень низкими темпами или не вестись вообще. Активность экономики в целом начинает повышать спрос на площади, избыточные площади поглощаются, и инвестирование становится доступным на благоприятных условиях. Подъем (рост) Expan sion Во время фазы подъема площади становится трудно найти, быстро растет арендная плата вслед за новым строительством, а цены продолжают повышаться. Строительная деятельность бурно растет, но процент незанятых площадей остается на нормальном уровне или ниже. Эта фаза может длиться в течение нескольких месяцев или лет, в зависимости от активности составляющих системы, тенденций в государственной экономике, сдвигов основной занятости, изменений в социальных взаимоотношениях (таких как размер семьи, необходимая площадь в расчете на одного работника и т.п.) и т.д. Фазы цикла рынка недвижимости

Изображение слайда
1/1
Реклама. Продолжение ниже
15

Слайд 15

Перепроизводство Overs s upply В какой-то момент фазы подъема рынок начинает переполняться. Строители и кредиторы могут не чувствовать, что рынок насыщен. Они продолжают закачивать на него деньги и новые здания. Либо может произойти внешний удар (неблагоприятное налоговое законодательство, спад в экономике в целом и т.д.) Во время этой фазы темпы роста цен, а затем и сами цены начинают умеренно снижаться, активность продаж замедляется, а процент незанятых площадей начинает расти. Так как эти изменения происходят в течение нескольких месяцев или лет, они имеют тенденцию к наращиванию темпа, и цены и активность продаж замедляются все сильнее. Новое строительство во время этой фазы пока продолжается по двум основным причинам. Строители, девелоперы или кредиторы не обнаруживают изменений, происходящих на рынке. У них уже есть на подходе проекты, строительство и развитие которых нельзя остановить. Когда же эти проекты будут завершены, новое строительство и развитие быстро прекратится. Спад (рецессия) Reces sion Во время этой фазы активность продаж очень низка, в то время как цены и арендная плата продолжают снижаться. Снижение стоимости собственности варьируется в зависимости от типа собственности и ее местонахождения. Одни районы могут сильно пострадать во время экономического спада, в то время как на другие районы спад может оказать небольшое воздействие. Но каково бы ни было это воздействие, темпы падения начинают снижаться, и, в конечном счете, достигается нижний предел. Новое строительство почти не ведется.

Изображение слайда
1/1
16

Слайд 16

Сущность методологии ДППМ и технология ее расчета Методология дискретного пространственно-параметрического моделирования рынка недвижимости (ДППМ) первоначально была разработана и использовалась как средство анализа сегмента рынка. Затем область ее применения была расширена на задачу массовой оценки объектов. В настоящее время осуществлено расширение возможностей применения ДППМ на статическое пространственно-параметрическое прогнозирование значений индикаторов рынка в малых кластерах с недостаточным объемом выборки.

Изображение слайда
1/1
17

Слайд 17

Сущность ДППМ В отличие от корреляционно-регрессионных моделей (КРМ), представляющих собой непрерывную функцию стоимости объектов недвижимости от непрерывных или псевдонепрерывных аргументов (факторов), ДППМ – это числовая многоуровневая матрица значений средней стоимости объектов в кластерах, рассчитанных по дискретным или псевдодискретным значениям аргументов. ДППМ образуется в результате параллельно-последовательного сечения рассматриваемой выборки объектов недвижимости по различным признакам. Расчленение общей выборки на кластеры повышает однородность выборок в кластерах и уменьшает диапазон разброса цен, а при достаточном объеме выборок – снижает дисперсию, среднеквадратическое (стандартное) отклонение и погрешность в определении среднего значения. Наиболее важными ценообразующими признаками являются: местоположение (территориальная локация), качество (категория функционального назначения, морфотип, класс качества), размер (диапазон общей площади, либо количество комнат в квартире).

Изображение слайда
1/1
18

Слайд 18

Каждый их признаков может иметь не один, а два-три уровня сечения. Так, в простейшем случае анализа рынка города в качестве признака местоположения используется зона, которая может представлять собой район в административных границах либо неформальный район, в границах которого средняя удельная цена статистически значимо отличается от смежных районов, а погрешность минимальна. В более сложном случае анализа рынка региона территорию расчленяют на неформальные зоны, затем – на входящие в них муниципальные районы, затем – выделяются города (населенные пункты). Наконец, в случае анализа рынка РФ выделяются на первом уровне Федеральные округа, на втором – регионы, на третьем – поселения регионов. В качестве признака качества объектов в простейшем случае анализа рынка жилой недвижимости города (рынок квартир в многоквартирных домах) используется показатель морфотипа (например, панельные, кирпичные, монолитно-каркасные дома) либо класса качества: эконом-класс, комфорт-класс, бизнес-класс, элитный класс, либо два укрупненных класса – массовый и престижный (повышенной комфортности). Морфотип (класс качества) – обобщенное понятие, объединяющее весь набор конструктивно-технических характеристик, влияющих на ценообразование объектов недвижимости.

Изображение слайда
1/1
19

Слайд 19

Аналогично, при анализе рынка офисной недвижимости расчленение идет по классам качества А, В, С и т.д. При анализе рынка коммерческой недвижимости, состоящего из нескольких сегментов (офисная, торговая, складская недвижимость и т. п.), на первом уровне рынок расчленяется по видам функционального назначения, на втором – по классам качества или морфотипам. В качестве признака размера используется либо количество комнат в квартире (для вторичного рынка жилой недвижимости), либо 3-5 диапазонов общей площади помещений (для первичного рынка жилой недвижимости, рынка коттеджей, офисных помещений), либо несколько диапазонов площади земельных участков. Наряду с приведенными тремя признаками, желательно строить ДППМ с использованием и других ценообразующих признаков. Например, стадии строительства, этажность зданий (при анализе рынка строительства и оценке строящихся объектов), расположение квартир на крайних или средних этажах, наличие и качество ремонта (для вторичного рынка жилой недвижимости), наличие и качество отделки (для первичного рынка), категория земель и вид разрешенного использования (для рынка земельных участков), расположение торговых объектов на первой линии улиц и т.д.

Изображение слайда
1/1
20

Слайд 20

Основные структурные элементы ДППМ Показатель (индикатор) – статистическая величина, агрегирующая данные в выборке (минимальная, максимальная и средневзвешенная удельная цена (ставка аренды), объем предложения объектов и т.д.). Признак сечения – фактор, влияющий на уровень показателей (индикаторов) рынка, по которому произведено сечение данных. Ячейка – место размещения единицы информации (значение на пересечении строки признаков и столбца показателей). Уровень сечения – набор кластеров, образовавшийся вследствие очередного шага параллельно-последовательно сечения исходной выборки данных. Кластер – строка ДППМ определенного уровня сечения. Конечный кластер (ядро) – строка ячеек, содержащих показатели неделимой выборки. Слой ячеек – набор (столбец) ячеек по одному показателю.

Изображение слайда
1/1
21

Слайд 21

До настоящего времени классическое построение ДППМ происходило в три этапа. 1) Строилась исходная ДППМ, в которой зафиксированы все признаки сечения и все показатели, но ячейки не заполнены. 2) В модель вводились показатели объема выборок и исключались ячейки (строки) с нулевыми и сверхмалыми (до 3-5 элементов) объемами выборок – результат назывался предварительная ДППМ. 3) Аналитик производил расчет всех показателей, статистическую обработку выборок, проверку значимости различия средних в смежных выборках, объединение выборок с незначимыми различиями либо дополнительное сечение путем корректировки диапазонов признаков с целью минимизации погрешности до уровня не более 10-15%, исключение строк с большей погрешностью. Результат назывался - оптимизированная ДППМ. После модернизации методики работа аналитика корректируется: исключается п. 2) и в п. 3) не исключаются строки с большой погрешностью. В эти ячейки заносятся результаты интерполяционного прогнозирования показателей.

Изображение слайда
1/1
22

Слайд 22

Особенности технологии статобработки выборок на рынке недвижимости Объекты недвижимости, в отличие от других видов товаров, и рынок недвижимости, в отличие от других товарных рынков, обладают некоторыми особенностями, исключающими применение стандартных методов статобработки выборок: необходимо определять не только полную цену (стоимость) объекта, но и удельную (цену 1 кв. м, арендную ставку), при этом разброс площади помещений даже в однородных выборках не позволяет пользоваться среднеарифметической удельной ценой выборке, и требуется определять средневзвешенное (по площади помещений) значение; устойчивая (по результатам многолетних исследований) асимметричность ценовых распределений на рынке недвижимости не позволяет применять стандартные формулы получения статистических показателей, ориентированные на гауссовские распределения; попытки принудительной нормализации выборок приводят к искажению средних цен, а главное – к исключению наиболее дорогих объектов из совокупной выборки. В связи с этим выработаны ряд эмпирических правил и формул, позволяющих учесть эти особенности.

Изображение слайда
1/1
23

Слайд 23

1. Средневзвешенная (по площади помещений) средняя удельная цена в выборке определяется как отношение суммы полных цен к сумме площадей: С уд.взв = Ʃ С п i / Ʃ S п i,, тыс. руб./кв. м ($/кв. м), где С уд.взв – средневзвешенная удельная цена объектов в выборке; С п i – полная цена каждого объекта; S п i – полезная площадь объектов. Средневзвешенная арендная ставка А взв : А взв = Ʃ А i х S п i / Ʃ S п i, $/кв. м в год (тыс. руб./кв. м в год). 2. Среднеквадратическое отклонение от средневзвешенной цены помещений в выборке (СКО): s = √ (∑S i ( C i – C уд. взв ) 2 / ∑S i ). 3. Погрешность в определении математического ожидания средневзвешенной удельной цены помещений по средневыборочному значению: δ = +/-2 s / √ ∑ S i, или δ = +/-2 ( √ (∑ S i ( C i – C уд.взв ) 2 ) / ∑ S i. 4. Исключение объектов по «выскакивающим» значениям цены: значение C i отбрасывается, если C i < (-2) S ; C i > 4 S. 5. Проверка значимости различия смежных выборок: если разность средних меньше полусуммы погрешностей |С уд.взв.1 - С уд.взв.2| < ( δ 1/2 + δ 2/2), то выборки считаются различающимися незначимо. Вариант условия - |С уд.взв.1 - С уд.взв.2| / ( δ 1/2 + δ 2/2) < 1.

Изображение слайда
1/1
24

Слайд 24

6. Определение рыночного диапазона цен (доверительного интервала при заданной доверительной вероятности). В нормальных (симметричных) распределениях принято доверительная вероятность 95%, тогда доверительный интервал составляет +/-2 s. В несимметричных распределениях, какими являются ценовые распределения на рынке недвижимости, рекомендован смещенный интервал (-1,0) s …+ (3,0) s. 7. Возможное более строгое определение доверительного интервала с учетом величины ассиметрии выборки на основе неравенства Чебышева, которое определяет вероятность того, что значения случайной величины (х) отклонятся от матожидания (μ) на расстояние, большее a (которое справедливо для распределений с любой асимметричностью). Эта вероятность не превышает отношение квадрата среднеквадратического отклонения к заданному расстоянию: P (| X - µ| >= α ) <= σ 2 / α. На основании этого получены следующие значения границ доверительных интервалов для типичного распределения цен на жилую недвижимость: (-1,5) s … (+2,5) s при ДВ=0,95.

Изображение слайда
1/1
25

Слайд 25

Развитие методологии ДППМ для кластеров с сверхмалыми выборками Методика статического пространственно-параметрического прогнозирования (основные расчетные формулы) Среднерыночная удельная цена (арендная ставка) объектов кластера любого уровня сечения, в том числе конечного, рассчитывается по формуле: С m = С ( m -2) х К i ( m -1) х К j ( m -1) х К k ( m -1), где С m – искомая средневзвешенная удельная цена (ставка аренды) кластера уровня m ; С ( m -2) – средневзвешенная удельная цена (ставка аренды) расширенного кластера уровня m -2, включающего искомый; К i ( m -1), К j ( m -1), К k ( m -1) - поправочные коэффициенты, соответственно – для первого признака сечения (например, местоположения), второго (например, качества) и третьего (например, размера); m – индекс уровня сечения.

Изображение слайда
1/1
26

Слайд 26

Поправочные коэффициенты рассчитываются по формулам (для каждого признака формулы равноправны): К i (m-1) = С ij (m-1) / С j(m-2), или К i (m-1) = С ik (m-1) / С i (m-2), …, или К i (m-1) = С ir (m-1) / С i (m-2) ; К j(m-1) = С jk (m-1) / С k(m-2), или К j(m-1) = С ji (m-1) / С j(m-2), …, или К j(m-1) = С jr (m-1) / С r(m-2) ; К k(m-1) = С ki (m-1) / С k(m-2), или К k(m-1) = С jk (m-1) / С k(m-2), или К k(m-1) = С kr (m-1) / С r(m-2) ; ……………………………………………………………………………………………… ; К r(m-1) = С rk (m-1) / С r(m-2), или К r(m-1) = С jr (m-1) / С r(m-2), или К r(m-1) = С r(r-1)(m-1) / С r(m-2), где С i ( m -2), С j ( m -2), С k ( m -2), С r ( m -2) - средняя удельная цена (арендная ставка) в кластере уровня m -2, выделенном в расширенном кластере соответственно по первому, второму, третьему, последнему признаку; С ij ( m -1), С ik ( m -1), С jk ( m -1), С r ( r -1)( m -1) – средняя удельная цена (арендная ставка) в кластере уровня m -1, выделенном в расширенном кластере по сочетанию соответственно первого и второго, первого и третьего, второго и третьего, последнего и предпоследнего признаков.

Изображение слайда
1/1
27

Слайд 27

Пример расчета средних арендных ставок в нерепрезентативных кластерах со сверхмалыми или нулевыми выборками Расчет приведен на простейшем примере двухуровневой ДППМ рынка аренды офисных помещений в Москве. ДППМ рынка аренды офисных помещений с дифференциацией по двум признакам (фрагмент) Зона класс Объем предложения. Ставка аренды, $/ кв. в год СКО Погрешность К-т вариации, % шт. млн. $ тыс. кв. м срвзв. по пло щади макс. мин. ср. арифм. $/ кв. м в год % Всего по Москве Все 8477 1147,9 2654 432 1500 100 396 160,7 3,49 0,8 37,15 А 211 194,4 275 706 1500 350 721 188,0 25,95 3,7 26,63 B 1066 323,0 659 490 1441 100 494 176,6 10,82 2,2 36,03 C 5325 531,3 1431 371 1500 100 376 138,8 3,81 1,0 37,41 D 242 19,0 78 242 480 100 219 92,0 11,85 4,9 37,97 E 1633 80,1 209 382 1056 100 379 137,6 6,81 1,8 36,00 ЦАО все 2487 483,4 822 588 1500 120 519 187,2 7,51 1,3 31,83 А 184 165,3 223 741 1500 350 726 191,2 28,27 3,8 25,79 B 531 137,4 235 584 1441 120 551 189,4 16,45 2,8 32,45 C 1294 149,8 295 507 1500 150 501 173,7 9,66 1,9 34,29 D 35 3,3 10 319 450 121 287 106,4 36,51 11,5 33,37 E 443 27,6 57 479 1056 167 468 151,2 14,38 3,0 31,55

Изображение слайда
1/1
28

Слайд 28

СЗАО все 330 34,70 108 319 900 101 345 109,5 12,08 3,8 34,35 А 0 - - - - - - - - - - B 32 6,2 17 352 900 200 371 131,9 47,39 13,5 37,52 C 205 25,9 83 311 900 120 345 111,4 15,59 5,0 35,80 D 7 0,1 1 193 300 121 228 80,1 65,36 33,8 41,43 E 86 2,4 7 343 750 101 345 92,2 20,00 5,8 26,91 СВАО все 808 102,1 295,6 345 1080 108 337 97,8 6,89 2,0 28,33 А 0 - - - - - - - - - - B 62 23,3 58,1 402 1080 110 413 131,8 33,76 8,4 32,83 C 591 72,2 215,7 335 800 108 338 78,3 6,45 1,9 23,39 D 36 1,4 6,1 236 353 110 190 73,2 24,75 10,5 31,02 E 119 5,1 15,8 324 750 120 334 120,7 22,23 6,8 37,26 ВАО все 995 63,14 188,5 335 747 100 328 87,8 5,57 1,7 26,21 А 0 - - - - - - - - - - B 37 9,8 22,2 442 747 100 430 179,9 59,96 13,6 40,69 C 741 44,6 132,3 337 706 144 334 70,6 5,19 1,5 20,94 D 20 1,7 11,2 155 350 120 203 70,7 32,44 21,0 45,66 E 195 6,7 22,1 302 714 120 301 97,1 13,95 4,6 32,12 ЮВАО все 992 62,97 203,7 309 720 100 301 95,4 6,06 2,0 30,86 А 0 - - - - - - - - - - B 59 12,0 27,1 443 700 120 412 114,8 30,16 6,8 25,92 C 660 40,4 137,1 294 720 100 296 76,9 5,99 2,0 26,13 D 66 2,6 12,7 204 400 120 192 69,9 17,33 8,5 34,22 E 207 8,0 26,8 299 706 100 320 108,6 15,13 5,1 36,36 ЗАО все 452 79,2 186 426 1200 120 389 151,3 14,25 3,4 35,52 А 18 24,9 45 543 1000 480 707 168,8 81,89 15,1 31,06 B 29 5,8 14 404 1200 120 403 274,5 103,7 25,7 67,99 C 258 36,8 97 376 1077 150 361 110,9 13,83 3,7 29,45 D 9 1,2 4 314 400 121 254 108,4 76,66 24,4 34,49 E 138 10,6 24 433 1000 200 405 128,0 21,87 5,1 29,53

Изображение слайда
1/1
29

Слайд 29

В обобщенной по Москве выборке погрешность в определении средней не превысила 1%, а при дифференциации по АО и отдельно по классам (первый уровень сечения) составила максимально около 5%. На втором уровне сечения в выборках, дифференцированных по АО и классам, в кластерах ЦАО максимальная погрешность составила 11,5%, САО – 14,8%, ЮВАО – 8,5%, ЮАО – 13,1%, т. е. во всех этих кластерах средневзвешенные арендные ставки определены с допустимой погрешностью. В некоторых кластерах ЗАО (классы В и D), СЗАО (D), ВАО (D), ЮЗАО (D) и ЗелАО (D) погрешность в определении средней превышает допустимую, т. е. эти 6 выборок нерепрезентативны. В случае кластера «ЗАО класс В» это связано с большим собственным разбросом выборки (коэффициент вариации 68%), в остальных случаях – с малым объемом выборок. Кроме того, имеются 6 кластеров с нулевым объемом выборки: СЗАО (А), САО (А), СВАО (А), ВАО (А), ЮВАО (А), ЮЗАО (А). Для восполнения данных в нерепрезентативных кластерах и кластерах с нулевым объемом выборки используется методика статического (пространственно-параметрического) прогнозирования средних ставок аренды (удельных цен).

Изображение слайда
1/1
30

Слайд 30

Сопоставление результатов оценки средних арендных ставок в нерепрезентативных выборках с результатами статического интерполяционного прогнозирования АО Класс Средняя арендная ставка, $/кв. м в год Отклонение, % Оценка по статистическим данным Прогноз по настоящей методике ЗАО А 543 696 +15,1 ЗАО В 404 483 + 19,6 ЗАО D 314 239 -23,9 СЗАО D 193 179 -7,3 ВАО D 155 188 +21,3 ЮЗАО D 313 245 -21,7 Статическое экстраполяционное прогнозирование для кластеров с отсутствующим предложением АО Класс Средняя арендная ставка, $/кв. м в год Оценка по статистическим данным Прогноз по настоящей методике СЗАО А - 521 САО А - 577 СВАО А - 564 ВАО А - 547 ЮВАО А - 505 ЮЗАО А - 714

Изображение слайда
1/1
31

Последний слайд презентации: АНАЛИЗ РЫНКА И МАССОВАЯ ОЦЕНКА НЕДВИЖИМОСТИ В ЦЕЛЯХ НАЛОГООБЛОЖЕНИЯ Лектор:

Расчет по методике позволил уточнить значения средневзвешенной ставки аренды офисных помещений в нерепрезентативных выборках, изменив их значения на величину от -23,9% до +21,3% в пределах рыночного диапазона ставок. Для кластеров с отсутствующими предложениями (класс А в СЗАО, САО, СВАО, ВАО, ЮВАО, ЮЗАО) рассчитаны прогнозируемые средние значения арендных ставок в офисных помещениях, которые могут быть построены в этих округах.

Изображение слайда
1/1
Реклама. Продолжение ниже