Презентация на тему: АЛГЕБРА (3-й семестр)

АЛГЕБРА (3-й семестр)
МНОГОЧЛЕНЫ ОТ ОДНОЙ ПЕРЕМЕННОЙ
§ 3. Приводимые и неприводимые многочлены
§ 3. Приводимые и неприводимые многочлены
§ 3. Приводимые и неприводимые многочлены
§ 3. Приводимые и неприводимые многочлены
§ 3. Приводимые и неприводимые многочлены
§ 3. Приводимые и неприводимые многочлены
§ 3. Приводимые и неприводимые многочлены
§ 4. Производная многочлена и формула Тейлора
1. Производная многочлена и ее свойства.
1. Производная многочлена и ее свойства.
1. Производная многочлена и ее свойства.
1. Производная многочлена и ее свойства.
1. Производная многочлена и ее свойства.
1. Производная многочлена и ее свойства.
2. Формула Тейлора.
2. Формула Тейлора.
2. Формула Тейлора.
2. Формула Тейлора.
2. Формула Тейлора.
§5. Отделение кратных множителей.
1. Кратные неприводимые множители.
1. Кратные неприводимые множители.
1. Кратные неприводимые множители.
2. Отделение кратных множителей.
2. Отделение кратных множителей.
2. Отделение кратных множителей.
2. Отделение кратных множителей.
АЛГЕБРА (3-й семестр)
1/30
Средняя оценка: 4.8/5 (всего оценок: 46)
Код скопирован в буфер обмена
Скачать (313 Кб)
1

Первый слайд презентации: АЛГЕБРА (3-й семестр)

2010-11 учебный год Доцент Мартынова Т. А.

Изображение слайда
2

Слайд 2: МНОГОЧЛЕНЫ ОТ ОДНОЙ ПЕРЕМЕННОЙ

ЛЕКЦИЯ 6 Доцент Мартынова Т.А.

Изображение слайда
3

Слайд 3: 3. Приводимые и неприводимые многочлены

Основными задачами этого параграфа являются рассмотрение: понятий приводимого и неприводимого многочленов; теоремы об однозначном разложении многочлена в произведение неприводимых; критерий приводимости многочленов 2-й и 3-й степени.

Изображение слайда
4

Слайд 4: 3. Приводимые и неприводимые многочлены

(2) Замечание 4. Если в разложении (2) сгруппировать одинаковые сомножители, то получим разложение вида , где неприводимые нормированные многочлены попарно различны. Такое разложение называется каноническим.

Изображение слайда
5

Слайд 5: 3. Приводимые и неприводимые многочлены

Замечание 5. Теорема 1 не дает практического способа нахождения канонического разложения многочлена над произвольным полем. В общем случае такого способа не существует. Но в некоторых частных случаях это сделать можно, например, путем преобразований или, отделяя кратные множители многочлена. С последним методом мы познакомимся позже, а сейчас рассмотрим пример на использование первого метода.

Изображение слайда
6

Слайд 6: 3. Приводимые и неприводимые многочлены

Пример 1. Найти каноническое разложение многочлена f(x)=x 4 – 16 над полями Q, R и C. ◘ Имеем f(x) = x 4 -16 = ( x 2 – 4 ) ( x 2 + 4 ) = = ( x + 2 ) ( x - 2 ) ( x 2 + 4 ) каноническое разложение многочлена f(x) = x 4 – 16 над полями Q, R, а f(x) = x 4 -16 = ( x + 2 ) ( x - 2 )( x + 2i ) ( x – 2i ) каноническое разложение многочлена f(x)=x 4 – 16 над полем С.

Изображение слайда
7

Слайд 7: 3. Приводимые и неприводимые многочлены

Полезно иметь в виду следующие два утверждения. Т е о р е м а 2. Если степень многочлена f(x) из кольца P [ x ] больше 1 и f(x) имеет хотя бы один корень с в поле P, то он приводим над P. ◘ В самом деле, по характеристическому свойству корня имеем f(x) = (x-c)q(x), где многочлен q(x) из P [ x ] имеет положительную степень. Отсюда следует приводимость f(x) над P. ◙

Изображение слайда
8

Слайд 8: 3. Приводимые и неприводимые многочлены

Разумеется, приводимыми могут быть и многочлены, не имеющие корней в поле P. Например, f(x) = ( x 2 – 2 )( x 2 + 4 ) не имеет рациональных корней, но он приводим над Q. Таким образом, наличие корня в поле P – это достаточный признак приводимости многочленов степени > 1 над полем P. Для многочленов 2-й и 3-й степени этот признак приводимости является также необходимым.

Изображение слайда
9

Слайд 9: 3. Приводимые и неприводимые многочлены

Т е о р е м а 3. Многочлен f(x) из кольца P [ x ] 2 -й или 3 -й степени приводим над полем P тогда и только тогда, когда он имеет по крайней мере один корень в поле P. ◘ Если f(x)  P [ x ], deg f(x) > 1 ( в частности, deg f(x) = 2 или deg f(x) = 3 ) и f(x) имеет корень в поле P, то по теореме 2 f(x) приводим в P [ x ]. Обратно, если многочлен f(x) 2-й или 3-й степени приводим над P, то в его разложении в произведение двух многочленов из кольца один из множителей имеет первую степень, т.е. f(x)=(ax+b)q(x). Отсюда элемент – ( b/a ) поля P является корнем многочлена f(x). ◙

Изображение слайда
10

Слайд 10: 4. Производная многочлена и формула Тейлора

Основными задачами этого параграфа являются рассмотрение вопросов: понятие и свойства производной многочлена; теорема Тейлора;

Изображение слайда
11

Слайд 11: 1. Производная многочлена и ее свойства

При изучении многочленов, как и при изучении любых функций, оказывается полезным понятие производной. Если P – числовое поле, то оно всегда содержит в качестве подполя поле Q рациональных чисел и, следовательно, является плотным, т.е. каждая точка множества P является предельной при обычном понимании окрестности точки. В таких полях можно пользоваться обычным определением производной через предел. Если же P не является числовым, то не имея в нем понятия обычной окрестности (обычной топологии), мы не можем на такое поле распространить обычное понятие производной. Над такими полями понятие производной вводится формально, по известному правилу дифференцирования многочленов. Оказывается, что при этом сохраняются все важные свойства, известные для производных функций.

Изображение слайда
12

Слайд 12: 1. Производная многочлена и ее свойства

Определение 1. Производной многочлена из кольца P [x] называется многочлен, обозначаемый через f’(x) и равный . Таким образом, для нахождения производной f’(x) надо каждый член a k x k многочлена f(x) взять кратным k раз, а показатель степени k  1 переменной x при уменьшить на 1. Очевидно, что c’= 0 для любого элемента c из P. Вторая производная определяется как производная многочлена f’(x) и т.д.

Изображение слайда
13

Слайд 13: 1. Производная многочлена и ее свойства

Т е о р е м а 1 ( о свойствах производной). Пусть f(x) и g(x) – произвольные многочлены из кольца P [ x ], c – любой элемент поля P. Тогда справедливы следующие свойства : 1 . (f(x) ± g(x))’= f’(x) ± g’(x). 2 . (f(x) g(x))’= f’(x)g(x) + f(x)g’(x). 3 . (cf(x) )’= c f’(x). 4 . ( f(x) k )’= kf(x) k-1 f’(x).

Изображение слайда
14

Слайд 14: 1. Производная многочлена и ее свойства

1 . (f(x) ±g(x))’= f’(x) ± g’(x). 2 . (f(x) g(x))’= f’(x)g(x) + f(x)g’(x). 3 . (cf(x) )’= c f’(x). 4 . ( f(x) k )’= kf(x) k-1 f’(x). ◘ Докажем первое из этих равенств. Пусть. Тогда , где s=max { n,m }, a k = 0 при k>n и b k = 0 при k>m. По определению производной имеем . (1)

Изображение слайда
15

Слайд 15: 1. Производная многочлена и ее свойства

1 . (f(x) ±g(x))’= f’(x) ± g’(x). 2 . (f(x) g(x))’= f’(x)g(x) + f(x)g’(x). 3 . (cf(x) )’= c f’(x). 4 . ( f(x) k )’= kf(x) k-1 f’(x). (1) С другой стороны, учитывая, что , имеем . (2) Из (1) и (2) получаем равенство 1 .

Изображение слайда
16

Слайд 16: 1. Производная многочлена и ее свойства

1 . (f(x) ±g(x))’= f’(x) ± g’(x). 2 . (f(x) g(x))’= f’(x)g(x) + f(x)g’(x). 3 . (cf(x) )’= c f’(x). 4 . ( f(x) k )’= kf(x) k-1 f’(x). Аналогично проверяется свойство 2 . Свойство 3  вытекает из свойства 2  при g(x)=c. Свойство 2  с помощью индукции можно распространить на любое конечное число сомножителей, т.е. = =. Отсюда при получим свойство 4 . ◙

Изображение слайда
17

Слайд 17: 2. Формула Тейлора

Используя понятие производной многочлена, можно вычислить коэффициенты разложения любого многочлена из кольца P [ x ] по степеням двучлена ( x-c ). Предположим, что такое разложение существует . (3) Наша задача – найти коэффициенты A 0,A 1,A 2,…,A n этого разложения. Найдем все производные многочлена f(x) из (3):

Изображение слайда
18

Слайд 18: 2. Формула Тейлора

. (3) ……………………………………………………………… ……………………………………………………………… Отсюда при x=c получаем (4) и, сл - но, . (5) Подставив значения коэффициентов из (5) в (3), получим . Это выражение и называют формулой Тейлора (1685–1731).

Изображение слайда
19

Слайд 19: 2. Формула Тейлора

Пример 1. Найти значения многочлена и всех его производных при x= 10, используя схему Горнера. ◘ Запишем разложение многочлена f(x) по степеням вида (3): . Очевидно, что коэффициент A 0 равен остатку f(x) от деления на x-c : .

Изображение слайда
20

Слайд 20: 2. Формула Тейлора

Далее, из последнего равенства видно, что коэффициент A 1 равен остатку от деления неполного частного, стоящего в квадратных скобках, на x-c и т.д. Учитывая, что остаток и неполное частное от деления многочлена на двучлен можно находить с помощью схемы Горнера, коэффициенты A 0, A 1, A 2, A 3, A 4 находятся из следующей таблицы:

Изображение слайда
21

Слайд 21: 2. Формула Тейлора

Таким образом, разложение многочлена f(x) по степеням x-c. По формулам (4) имеем f (10) = A 0 =-3, f’ (10) = A 1 =807, f’’ (10) = 2! A 2 =522, f (3) (10) = 3! A 3 =168, f (4) (10) = 4!=24. ◙

Изображение слайда
22

Слайд 22: 5. Отделение кратных множителей

Эффективных методов разложения многочлена на неприводимые множители нет. Более того, даже критериев приводимости и неприводимости над произвольным полем P нет. В этом параграфе мы укажем способ, который позволяет выделить произведение неприводимых множителей одинаковой кратности, а это во многих случаях облегчает задачу разложения на неприводимые множители. Введем сначала понятие кратного неприводимого множителя многочлена.

Изображение слайда
23

Слайд 23: 1. Кратные неприводимые множители

Определение 1. Говорят, что неприводимый над полем P многочлен p(x) является множителем кратности k для многочлена f(x) из кольца P [ x ] или что p(x) входит в разложение f(x) с кратностью k, если f(x) делится на p(x) k и не делится на p(x) k+1, т.е. многочлен f(x) представим в виде f(x)= p(x) k q(x), (1) где q(x) не делится на p(x). Множители кратности 1 называются простыми.

Изображение слайда
24

Слайд 24: 1. Кратные неприводимые множители

Т е о р е м а 2. Если неприводимый над полем Р многочлен p(x) входит в разложение многочлена f(x)  P [ x ] с кратностью k, то входит в разложение производной ) с кратностью k-1. ◘ В самом деле, дифференцируя равенство f(x)= p(x) k q(x), (1) получим . Второе слагаемое в квадратной скобке делится на p(x), но первое не делится, т.к. p’(x) и q(x) не делятся на p(x). Следовательно, сумма в квадратной скобке не может делиться на p(x). Таким образом, p(x) входит в разложение f’(x) с кратностью k-1. ◙

Изображение слайда
25

Слайд 25: 1. Кратные неприводимые множители

Т е о р е м а 2. Если неприводимый над полем Р многочлен p(x) входит в разложение многочлена f(x)  P [ x ] с кратностью k, то входит в разложение производной ) с кратностью k-1. Следствие 1. Если c – корень многочлена f(x) кратности k, то c является корнем кратности k-1 для его производной. ◘ Действительно, достаточно в качестве p(x) взять многочлен x-c и применить теорему 2. ◙ Следствие 2. Если – каноническое разложение многочлена в произведение неприводимых многочленов, то . ◙ Следствие 3. Многочлен над полем Р не имеет кратных множителей тогда и только тогда, когда он взаимно прост со своей производной. ◘ В самом деле, в силу следствия 2 d(x) =НОД( f(x),f’(x) )=1  k 1 -1=k 2 -1=…=k s -1= 0  k 1 =k 2 =…=k s = 1. ◙

Изображение слайда
26

Слайд 26: 2. Отделение кратных множителей

Пусть. Введем обозначения: Y 1, Y 2, …,Y s – произведение всех неприводимых множителей соответственно кратности 1, 2, …, k в каноническом разложении f(x). Тогда . ( 2 ) Наша задача будет состоять в том, чтобы найти многочлены Y 1, Y 2, …,Y s.

Изображение слайда
27

Слайд 27: 2. Отделение кратных множителей

Согласно следствию 2 из теоремы 1 имеем: Составим теперь многочлены

Изображение слайда
28

Слайд 28: 2. Отделение кратных множителей

Отсюда, поделив каждое из полученных равенств на следующее за ним равенство, получим равенства: . Подставляя теперь найденные значения a n Y 1, Y 2,…, Y s в равенство ( 2 ), окончательно имеем , где .

Изображение слайда
29

Слайд 29: 2. Отделение кратных множителей

Пример. Отделить кратные множители многочлена . Решение. 1) Находим многочлены D i = НОД( D i -1, D ’ i -1 ) : , ; , ; ,. 2) Находим многочлены: ,,. 3) Находим многочлены: ,,. Ответ:.

Изображение слайда
30

Последний слайд презентации: АЛГЕБРА (3-й семестр)

Изображение слайда