# Презентация на тему: 1 Class 5 Optimization models Demand function equation. Revenue

Реклама. Продолжение ниже
1/8
Средняя оценка: 4.9/5 (всего оценок: 51)
Код скопирован в буфер обмена
Реклама. Продолжение ниже
1

## Первый слайд презентации

1 Class 5 Optimization models Demand function equation. Revenue maximization. Profit maximization. BEPs. Study materials: Slides

Изображение слайда
1/1
2

## Слайд 2: Demand function

2 Demand function What shall we do with our selling Price, if: P 1 = \$1,000, then Q 1 = 400 units, and R 1 = \$400,000 P 2 = \$1,750, then Q 2 = 250 units, and R 2 = \$437,500 To do: (a) increase the price, or (b) decrease the price, or (c) keep the price at \$1,750? SOLUTION: The price that MAX the revenue shall be: \$2,250, \$2,000, \$1,750, \$1,500, \$1,250?

Изображение слайда
1/1
3

## Слайд 3: Demand function

3 Demand function Correct answer: The “best” price to MAX the revenue would be: \$1,500 P opt = \$1,500, then Q opt = 300 units, and R MAX = \$450,000 To do: (a) increase the price (b) decrease the price (c) keep the price at \$1,750 This can be solved through (1) finding the demand function equation, and (2) solving a revenue maximization problem.

Изображение слайда
1/1
4

## Слайд 4: Demand function

4 Demand function Can be found using the approaches: Sales tests: P 1, Q 1 P 2, Q 2 NB: Demand function is not always linear. P(MAX) and Q(MAX) are indicative. Sales test not always linear. Need to offset the effect of seasonality.

Изображение слайда
1/1
5

## Слайд 5: Demand Function Equation

5 Demand Function Equation Y = a + b*X, basic linear equation P = a + b*Q, demand function equation where: a = P(MAX in the market) = 3,000 b = slope of the demand function line = delta Y/ delta X = -5 Q(MAX) = - a/b = 600 (units) NB: Mind the negative value of the variable coefficient of the linear equation “b”.

Изображение слайда
1/1
6

## Слайд 6: Task: Revenue maximization

6 Task: Revenue maximization Q*(Revenue MAX) = - a/2b = 300 (u) Substitute Q* into the Demand function equation, will find P* (= the price at Q* point) P*= 3,000 +(-5)*300 = \$1,500 R* = P* x Q* = 450,000 NB: R* is highest revenue possible at the current demand.

Изображение слайда
1/1
7

## Слайд 7: Profit maximization

7 Profit maximization Q** (Profit MAX) = - (a – VC(u)) / 2b P** shall correspond to the value of Q** Data needed: fixed and variable costs FC = \$100,000 VC(u) = \$500 Q** = 250(u), then P** = 1,750, then R** = 437,500, and Pr** = R** - FC – VC(u)Q** = \$212,500 Pr** is highest operating profit possible at the current demand and total costs

Изображение слайда
1/1
Реклама. Продолжение ниже
8

## Последний слайд презентации: 1 Class 5 Optimization models Demand function equation. Revenue: Summary

8 Summary

Изображение слайда
1/1
Реклама. Продолжение ниже